Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DWnt4 regulates the dorsoventral specificity of retinal projections in the Drosophila melanogaster visual system

An Erratum to this article was published on 01 February 2006

This article has been updated

Abstract

In Drosophila melanogaster, the axons of retinal photoreceptor cells extend to the first optic ganglion, the lamina, forming a topographic representation. Here we show that DWnt4, a secreted protein of the Wnt family, is the ventral cue for the lamina. In DWnt4 mutants, ventral retinal axons misprojected to the dorsal lamina. DWnt4 was normally expressed in the ventral half of the developing lamina and DWnt4 protein was detected along ventral retinal axons. Dfrizzled2 and dishevelled, respectively, encode a receptor and a signaling molecule required for Wnt signaling. Mutations in both genes caused DWnt4-like defects, and both genes were autonomously required in the retina, suggesting a direct role of DWnt4 in retinal axon guidance. In contrast, iroquois homeobox genes are the dorsal cues for the retina. Dorsal axons accumulated DWnt4 and misprojected to the ventral lamina in iroquois mutants; the phenotype was suppressed in iroquois Dfrizzled2 mutants, suggesting that iroquois may attenuate the competence of Dfrizzled2 to respond to DWnt4.

Note: The PDF version of this article was corrected on 05 January 2006. Please see the PDF for details.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: D. melanogaster retinotopic mapping.
Figure 2: The expression pattern of DWnt4.
Figure 3: DWnt4 regulates ventral R axon guidance.
Figure 4: Dfz2 and dsh show a DWnt4-like phenotype.
Figure 5: Autonomous requirement of noncanonical Wnt signaling in the retina.
Figure 6: Genetic interactions between hep and DWnt4/Dfz2.
Figure 7: Involvement of iro in attenuating the competence of Dfz2 in dorsal axons to respond to DWnt4.

Similar content being viewed by others

Change history

  • 05 January 2006

    The PDF version of this article was corrected on 05 January 2006. Please see the PDF for the details.

References

  1. Kunes, S. & Steller, H. Topography in the Drosophila visual system. Curr. Opin. Neurobiol. 3, 53–59 (1993).

    Article  CAS  Google Scholar 

  2. Clandinin, T.R. & Zipursky, S.L. Afferent growth cone interactions control synaptic specificity in the Drosophila visual system. Neuron 28, 427–436 (2000).

    Article  CAS  Google Scholar 

  3. Kunes, S., Wilson, C. & Steller, H. Independent guidance of retinal axons in the developing visual system of Drosophila. J. Neurosci. 13, 752–767 (1993).

    Article  CAS  Google Scholar 

  4. McLaughlin, T., Hindges, R. & O'Leary, D.D. Regulation of axial patterning of the retina and its topographic mapping in the brain. Curr. Opin. Neurobiol. 13, 57–69 (2003).

    Article  CAS  Google Scholar 

  5. Dearborn, R. Jr., He, Q., Kunes, S. & Dai, Y. Eph receptor tyrosine kinase-mediated formation of a topographic map in the Drosophila visual system. J. Neurosci. 22, 1338–1349 (2002).

    Article  CAS  Google Scholar 

  6. Cavodeassi, F., Diez Del Corral, R., Campuzano, S. & Dominguez, M. Compartments and organising boundaries in the Drosophila eye: the role of the homeodomain Iroquois proteins. Development 126, 4933–4942 (1999).

    CAS  PubMed  Google Scholar 

  7. Cadigan, K.M. & Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev. 11, 3286–3305 (1997).

    Article  CAS  Google Scholar 

  8. van de Wetering, M. et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799 (1997).

    Article  CAS  Google Scholar 

  9. Veeman, M.T., Axelrod, J.D. & Moon, R.T. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev. Cell 5, 367–377 (2003).

    Article  CAS  Google Scholar 

  10. Lyuksyutova, A.I. et al. Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling. Science 302, 1984–1988 (2003).

    Article  CAS  Google Scholar 

  11. Yoshikawa, S., McKinnon, R.D., Kokel, M. & Thomas, J.B. Wnt-mediated axon guidance via the Drosophila Derailed receptor. Nature 422, 583–588 (2003).

    Article  CAS  Google Scholar 

  12. Cohen, E.D. et al. DWnt4 regulates cell movement and focal adhesion kinase during Drosophila ovarian morphogenesis. Dev. Cell 2, 437–448 (2002).

    Article  CAS  Google Scholar 

  13. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    Article  CAS  Google Scholar 

  14. Senti, K.A. et al. Flamingo regulates R8 axon-axon and axon-target interactions in the Drosophila visual system. Curr. Biol. 13, 828–832 (2003).

    Article  CAS  Google Scholar 

  15. Graba, Y. et al. DWnt-4, a novel Drosophila Wnt gene acts downstream of homeotic complex genes in the visceral mesoderm. Development 121, 209–218 (1995).

    CAS  PubMed  Google Scholar 

  16. Newsome, T.P. et al. Trio combines with dock to regulate Pak activity during photoreceptor axon pathfinding in Drosophila. Cell 101, 283–294 (2000).

    Article  CAS  Google Scholar 

  17. Huang, Z. & Kunes, S. Hedgehog, transmitted along retinal axons, triggers neurogenesis in the developing visual centers of the Drosophila brain. Cell 86, 411–422 (1996).

    Article  CAS  Google Scholar 

  18. Hazelett, D.J., Bourouis, M., Walldorf, U. & Treisman, J.E. decapentaplegic and wingless are regulated by eyes absent and eyegone and interact to direct the pattern of retinal differentiation in the eye disc. Development 125, 3741–3751 (1998).

    CAS  Google Scholar 

  19. Stowers, R.S. & Schwarz, T.L. A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics 152, 1631–1639 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cadigan, K.M., Fish, M.P., Rulifson, E.J. & Nusse, R. Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing. Cell 93, 767–777 (1998).

    Article  CAS  Google Scholar 

  21. Rulifson, E.J., Micchelli, C.A., Axelrod, J.D., Perrimon, N. & Blair, S.S. wingless refines its own expression domain on the Drosophila wing margin. Nature 384, 72–74 (1996).

    Article  CAS  Google Scholar 

  22. Axelrod, J.D. Unipolar membrane association of Dishevelled mediates Frizzled planar cell polarity signaling. Genes Dev. 15, 1182–1187 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Adler, P.N. Planar signaling and morphogenesis in Drosophila. Dev. Cell 2, 525–535 (2002).

    Article  CAS  Google Scholar 

  24. Papayannopoulos, V., Tomlinson, A., Panin, V.M., Rauskolb, C. & Irvine, K.D. Dorsal-ventral signaling in the Drosophila eye. Science 281, 2031–2034 (1998).

    Article  CAS  Google Scholar 

  25. Duchek, P., Somogyi, K., Jekely, G., Beccari, S. & Rorth, P. Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 107, 17–26 (2001).

    Article  CAS  Google Scholar 

  26. Kaphingst, K. & Kunes, S. Pattern formation in the visual centers of the Drosophila brain: wingless acts via decapentaplegic to specify the dorsoventral axis. Cell 78, 437–448 (1994).

    Article  CAS  Google Scholar 

  27. Hayashi, S. et al. GETDB, a database compiling expression patterns and molecular locations of a collection of Gal4 enhancer traps. Genesis 34, 58–61 (2002).

    Article  CAS  Google Scholar 

  28. Yoshida, S. et al. DPP signaling controls development of the lamina glia required for retinal axon targeting in the visual system of Drosophila. Development 132, 4587–4598 (2005).

    Article  CAS  Google Scholar 

  29. Newsome, T.P., Asling, B. & Dickson, B.J. Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127, 851–860 (2000).

    CAS  PubMed  Google Scholar 

  30. Pai, L.M., Orsulic, S., Bejsovec, A. & Peifer, M. Negative regulation of Armadillo, a Wingless effector in Drosophila. Development 124, 2255–2266 (1997).

    CAS  Google Scholar 

  31. Martin-Blanco, E. et al. puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes Dev. 12, 557–570 (1998).

    Article  CAS  Google Scholar 

  32. Adachi-Yamada, T. et al. p38 mitogen-activated protein kinase can be involved in transforming growth factor beta superfamily signal transduction in Drosophila wing morphogenesis. Mol. Cell. Biol. 19, 2322–2329 (1999).

    Article  CAS  Google Scholar 

  33. Chen, C.M. & Struhl, G. Wingless transduction by the Frizzled and Frizzled2 proteins of Drosophila. Development 126, 5441–5452 (1999).

    CAS  Google Scholar 

  34. Bhanot, P. et al. Frizzled and Dfrizzled-2 function as redundant receptors for Wingless during Drosophila embryonic development. Development 126, 4175–4186 (1999).

    CAS  Google Scholar 

  35. Glise, B., Bourbon, H. & Noselli, S. hemipterous encodes a novel Drosophila MAP kinase kinase, required for epithelial cell sheet movement. Cell 83, 451–461 (1995).

    Article  CAS  Google Scholar 

  36. Oh, S.W. et al. A P-element insertion screen identified mutations in 455 novel essential genes in Drosophila. Genetics 163, 195–201 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Takei, Y., Ozawa, Y., Sato, M., Watanabe, A. & Tabata, T. Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans. Development 131, 73–82 (2004).

    Article  CAS  Google Scholar 

  38. Diez del Corral, R., Aroca, P., Gomez-Scarmeta, J.L., Cavodeassi, F. & Modolell, J. The Iroquois homeodomain proteins are required to specify body wall identity in Drosophila. Genes Dev. 13, 1754–1761 (1999).

    Article  CAS  Google Scholar 

  39. Higashijima, S. et al. Dual Bar homeo box genes of Drosophila required in two photoreceptor cells, R1 and R6, and primary pigment cells for normal eye development. Genes Dev. 6, 50–60 (1992).

    Article  CAS  Google Scholar 

  40. Packard, M. et al. The Drosophila Wnt, wingless, provides an essential signal for pre- and postsynaptic differentiation. Cell 111, 319–330 (2002).

    Article  CAS  Google Scholar 

  41. Nagaso, H., Murata, T., Day, N. & Yokoyama, K.K. Simultaneous detection of RNA and protein by in situ hybridization and immunological staining. J. Histochem. Cytochem. 49, 1177–1182 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Awasaki, B. Dickson and S. Kunes for critical comments on the manuscript; S. Cohen, N. Strausfeld, L. Ziparsky and members of the Tabata lab for helpful discussions; and Y. Maeyama for technical assistance. We are grateful to T. Akiyama, J. Axelrod, S. Campuzano, S. Cumberledge, E. Cohen, S. Cohen, B. Dickson, S. Hou, T. Kojima, E. Kuranaga, K. Matsuno, M. Miura, A. Nishida, R. Nusse, K. Saigo, A. Sato, G. Struhl, T. Suzuki, A. Tomlinson and E. Wilder for antibodies, fly strains and plasmids; the Bloomington Stock Center and the Drosophila Genetic Resource Center (Kyoto) for fly strains; and the Developmental Studies Hybridoma Bank for monoclonal antibodies. This work was supported by grants-in-aid from the Ministry of Education, Science, and Culture of Japan (M.S. and T.T.), by the Toray Science Foundation (T.T.) and by the Kato Memorial Bioscience Foundation (M.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Tabata.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Retinotopic mapping at late third instar. (PDF 134 kb)

Supplementary Fig. 2

Outer- and inner-photoreceptor axons are affected in DWnt4 and iro backgrounds. (PDF 209 kb)

Supplementary Fig. 3

DWnt2 expression in the developing lamina. (PDF 100 kb)

Supplementary Fig. 4

R axon projections are regulated independently of the dorso-ventral patterning of the retinae. (PDF 414 kb)

Supplementary Fig. 5

Models. (PDF 150 kb)

Supplementary Fig. 6

DWnt4 expression in the glia, the retina and the early lamina. (PDF 174 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, M., Umetsu, D., Murakami, S. et al. DWnt4 regulates the dorsoventral specificity of retinal projections in the Drosophila melanogaster visual system. Nat Neurosci 9, 67–75 (2006). https://doi.org/10.1038/nn1604

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1604

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing