Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Making spatial multiplexing a reality

To avoid a 'capacity crunch', future optical networks will need to simultaneously transmit multiple spatial channels. For spatial multiplexing to be practical, the upgrade path from legacy wavelength-division multiplexed systems needs to be smooth and to consider integration-induced crosstalk from the outset.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Five physical dimensions (polarization, frequency, quadrature, time and space) form the basis of all electromagnetic communication techniques.
Figure 2: An SDM network will have to operate across a diverse infrastructure, making use of the installed WDM infrastructure to the fullest possible extent.
Figure 3: Optical superchannels achieve a desired interface rate through the use of parallel data streams.

References

  1. Tkach, R. W. Bell Labs Tech. J. 14, 3–9 (2010).

    Article  Google Scholar 

  2. IEEE 802.3 industry connections Ethernet bandwidth assessment (IEEE 802.3 BWA ad hoc report) http://www.ieee802.org/3/ad_hoc/bwa/BWA_Report.pdf (2012).

  3. Winzer, P. J. IEEE/LEOS Newsletter http://photonicssociety.org/newsletters/feb09/modulation.pdf (2009).

    Google Scholar 

  4. Winzer, P. J. J. Lightwave Technol. 30, 3824–3835 (2012).

    Article  ADS  Google Scholar 

  5. Liu, X., Chandrasekhar, S. & Winzer, P. J. IEEE Sig. Process. Mag. 31, 16–24 (2014).

    Article  ADS  Google Scholar 

  6. Essiambre, R.-J., Kramer, G., Winzer, P. J., Foschini, G. J. & Goebel B. J. Lightwave Technol. 28, 662–701 (2010).

    Article  ADS  Google Scholar 

  7. Winzer, P. J. Euro. Conf. Opt. Commun. paper We.1.D.1 (2013).

  8. Chraplyvy, A. in Proc. Euro. Conf. Opt. Commun. (2009).

    Google Scholar 

  9. Essiambre, R.-J. & Tkach, R. W. Proc. IEEE 100, 1035–1055 (2012).

    Article  Google Scholar 

  10. Morioka, T. Proc. Optoelectron. Commun. Conf. paper FT4 (2009).

  11. Duvall, G. H. & Rackson, L. M. Bell Syst. Tech. J. 48, 1065–1093 (1969).

    Article  Google Scholar 

  12. Schwartz, M. I., Reenstra, W. A., Mullins, J. H. & Cook, J. S. Bell Syst. Tech. J. 57, 1881–1888 (1978).

    Article  Google Scholar 

  13. Fishman, D. A. et al. Proc. Opt. Fib. Commun. Conf. paper PD11 (1986).

  14. Porter, M. E. Cases in Competitive Strategy (Macmillan, 1983).

    Google Scholar 

  15. Warters, W. D. Bell Syst. Tech. J. 56, 1825–1827 (1977).

    Article  Google Scholar 

  16. Tucker, R. S. IEEE J. Sel. Top. Quantum Electron. 17, 245–260 (2011).

    Article  ADS  Google Scholar 

  17. Feuer, M. D. et al. Proc. Opt. Fib. Commun. Conf. paper PDP5B.8 (2013).

  18. Chen, X. et al. J. Lightwave Technol. 31, 641–647 (2013).

    Article  ADS  Google Scholar 

  19. Fontaine, N. et al. Proc. Opt. Fib. Commun. Conf. paper OTh1B.1 (2013).

  20. Chandrasekhar, S. & Liu, X. J. Lightwave Technol. 30, 3816–3823 (2012).

    Article  ADS  Google Scholar 

  21. Morioka, T. et al. IEEE Commun. Mag. 50, S31–S42 (2012).

    Article  Google Scholar 

  22. Richardson, D. J., Fini, J. M. & Nelson, L. E. Nature Photon. 7, 354–362 (2013).

    Article  ADS  Google Scholar 

  23. Sano, A., Hidehiko, T., Kobayashi, T. & Miyamoto, Y. Proc. Opt. Fib. Commun. Conf. paper Tu2J.1 (2014).

  24. Ryf, R. et al. Proc. Opt. Fib. Commun. Conf. paper PDP5A.1 (2013).

  25. Ip, E. et al. Proc. Opt. Fib. Commun. Conf. paper PDP5A.2 (2013).

  26. Sleiffer, V. A. J. M. et al. Opt. Express 22, 749–755 (2014).

    Article  ADS  Google Scholar 

  27. Taubenblatt, M. A. J. Lightwave Technol. 30, 448–457 (2012).

    Article  ADS  Google Scholar 

  28. Korotky, S. K. J. Opt. Commun. Netw. 4, 426–435 (2012).

    Article  Google Scholar 

  29. Foschini, G. J. Bell Labs Tech. J. 1, 41–59 (1996).

    Article  Google Scholar 

  30. Winzer, P. J. & Foschini, G. J. Opt. Express 19, 16680–16696 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Winzer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winzer, P. Making spatial multiplexing a reality. Nature Photon 8, 345–348 (2014). https://doi.org/10.1038/nphoton.2014.58

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.58

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing