Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation of the functionalizable methionine surrogate azidohomoalanine via copper-catalyzed diazo transfer

Abstract

The azide functional group has assumed a prominent role in chemical biology efforts in recent years. Azides may be readily introduced into proteins upon replacement of methionine residues with the non-canonical amino acid azidohomoalanine (AHA). This protocol describes a synthetic route to AHA based on the copper-catalyzed conversion of amines to azides. An alternate protocol for the preparation of AHA is presented in a companion paper. The synthesis and purification of AHA via the route described herein can be completed in 3–4 days.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Routes to covalent functionalization of azides.
Figure 2
Figure 3: Schematic of synthesis of AHA from protected diaminobutyric acid.

Similar content being viewed by others

References

  1. Prescher, J.A. & Bertozzi, C.R. Chemistry in living systems. Nat. Chem. Biol. 1, 13–21 (2005).

    Article  CAS  Google Scholar 

  2. Saxon, E. & Bertozzi, C.R. Cell surface engineering by a modified Staudinger reaction. Science 287, 2007–2010 (2000).

    Article  CAS  Google Scholar 

  3. Nilsson, B.L., Kiessling, L.L. & Raines, R.T. Staudinger ligation: a peptide from a thioester and azide. Org. Lett. 2, 1939–1941 (2000).

    Article  CAS  Google Scholar 

  4. Kolb, H.C., Finn, M.G. & Sharpless, K.B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  5. Rostovtsev, V.V., Green, L.G., Fokin, V.V. & Sharpless, K.B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective 'ligation' of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).

    Article  CAS  Google Scholar 

  6. Tornoe, C.W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).

    Article  CAS  Google Scholar 

  7. Agard, N.J., Prescher, J.A. & Bertozzi, C.R. A strain-promoted [3+2] azide–alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).

    Article  CAS  Google Scholar 

  8. Saxon, E. et al. Investigating cellular metabolism of synthetic azidosugars with the Staudinger ligation. J. Am. Chem. Soc. 124, 14893–14902 (2002).

    Article  CAS  Google Scholar 

  9. Kho, Y. et al. A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc. Natl. Acad. Sci. USA 101, 12479–12484 (2004).

    Article  CAS  Google Scholar 

  10. Kiick, K.L., Saxon, E., Tirrell, D.A. & Bertozzi, C.R. Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc. Natl. Acad. Sci. USA 99, 19–24 (2002).

    Article  CAS  Google Scholar 

  11. Comstock, L.R. & Rajski, S.R. Conversion of DNA methyltransferases into azidonucleosidyl transferases via synthetic cofactors. Nucleic Acids Res. 33, 1644–1652 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  12. Wang, Q. et al. Bioconjugation by copper(I)-catalyzed azide-alkyne 3+2 cycloaddition. J. Am. Chem. Soc. 125, 3192–3193 (2003).

    Article  CAS  Google Scholar 

  13. Mangold, J.B., Mischke, M.R. & Lavelle, J.M. Azidoalanine mutagenicity in Salmonella—effect of homologation and alpha-methyl substitution. Mutat. Res. 216, 27–33 (1989).

    Article  CAS  Google Scholar 

  14. Mangold, J.B., Du, Y.H., Mischke, M.R. & Lavelle, J.M. Effects of deuterium labeling on azido amino-acid mutagenicity in Salmonella-typhimurium. Mutat. Res. 308, 33–42 (1994).

    Article  CAS  Google Scholar 

  15. Link, A.J., Vink, M.K.S. & Tirrell, D.A. Presentation and detection of azide functionality in bacterial cell surface proteins. J. Am. Chem. Soc. 126, 10598–10602 (2004).

    Article  CAS  Google Scholar 

  16. Link, A.J. & Tirrell, D.A. Cell surface labeling of Escherichia coli via copper(I)-catalyzed 3+2 cycloaddition. J. Am. Chem. Soc. 125, 11164–11165 (2003).

    Article  CAS  Google Scholar 

  17. Link, A.J. et al. Discovery of aminoacyl-tRNA synthetase activity through cell-surface display of noncanonical amino acids. Proc. Natl. Acad. Sci. USA 103, 10180–10185 (2006).

    Article  CAS  Google Scholar 

  18. Kiick, K.L., van Hest, J.C.M. & Tirrell, D.A. Expanding the scope of protein biosynthesis by altering the methionyl-tRNA synthetase activity of a bacterial expression host. Angew. Chem. Int. Ed. 39, 2148–2152 (2000).

    Article  CAS  Google Scholar 

  19. Dieterich, D.C., Link, A.J., Graumann, J., Tirrell, D.A. & Schuman, E.M. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc. Natl. Acad. Sci. USA 103, 9482–9487 (2006).

    Article  CAS  Google Scholar 

  20. Dieterich, D.C. et al. Labeling, detection and identification of newly synthesized proteomes with bioorthogonal non-canonical amino-acid tagging. Nat. Protoc. 2, 532–540 (2007).

    Article  Google Scholar 

  21. Link, A.J., Vink, M.K.S. & Tirrell, D.A. Synthesis of the functionalizable methionine surrogate azidohomoalanine using Boc-homoserine as precursor. Nat. Protoc. 2, 1884–1887 (2007).

    Article  CAS  Google Scholar 

  22. Lundquist, J.T. & Pelletier, J.C. Improved solid-phase peptide synthesis method utilizing alpha-azide-protected amino acids. Org. Lett. 3, 781–783 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Rebecca Connor and Nick Fisk for refinements to this protocol. This work was supported by NIH, by an NSF graduate fellowship to A.J.L. and by a grant from the Netherlands Organization for Scientific Research to M.K.S.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A James Link.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Link, A., Vink, M. & Tirrell, D. Preparation of the functionalizable methionine surrogate azidohomoalanine via copper-catalyzed diazo transfer. Nat Protoc 2, 1879–1883 (2007). https://doi.org/10.1038/nprot.2007.268

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.268

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing