Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Simultaneous measurement of genome-wide transcription elongation speeds and rates of RNA polymerase II transition into active elongation with 4sUDRB-seq

Abstract

4sUDRB-seq separately measures, on a genomic scale, the distinct contributions of transcription elongation speed and rate of RNA polymerase II (Pol II) transition into active elongation (TAE) to the overall mRNA production rate. It uses reversible inhibition of transcription elongation with 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB), combined with a pulse of 4-thiouridine (4sU), to tag newly transcribed RNA. After DRB removal, cells are collected at several time points, and tagged RNA is biotinylated, captured on streptavidin beads and sequenced. 4sUDRB-seq enables the comparison of elongation speeds between different developmental stages or different cell types, and it allows the impact of specific transcription factors on transcription elongation speed versus TAE to be studied. RNA preparation takes 4 d to complete, with deep sequencing requiring an additional 4–11 d plus 1–3 d for bioinformatics analysis. The experimental protocol requires basic molecular biology skills, whereas data analysis requires knowledge in bioinformatics, particularly MATLAB and the Linux environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of 4sUDRB-seq.
Figure 2: Schematic comparison of 4sUDRB-seq and GRO-seq-based methods.
Figure 3: Representative results from DRB treatment and removal.
Figure 4: Representative results from 4sU-tagged enrichment.
Figure 5: Representative results from 4sUDRB-seq.

Similar content being viewed by others

References

  1. Wang, Z., Gerstein, M. & Snyder, M. RNA-seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dori-Bachash, M., Shalem, O., Manor, Y.S., Pilpel, Y. & Tirosh, I. Widespread promoter-mediated coordination of transcription and mRNA degradation. Genome Biol. 13, R114 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tani, H. & Akimitsu, N. Genome-wide technology for determining RNA stability in mammalian cells: historical perspective and recent advantages based on modified nucleotide labeling. RNA Biol. 9, 1233–1238 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rabani, M. et al. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat. Biotechnol. 29, 436–442 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Dolken, L. et al. High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA 14, 1959–1972 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Core, L.J., Waterfall, J.J. & Lis, J.T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mondal, T., Rasmussen, M., Pandey, G.K., Isaksson, A. & Kanduri, C. Characterization of the RNA content of chromatin. Genome Res. 20, 899–907 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, I.X. et al. RNA-DNA differences are generated in human cells within seconds after RNA exits polymerase II. Cell Rep. 6, 906–915 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Churchman, L.S. & Weissman, J.S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469, 368–373 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Sims, R.J. III, Belotserkovskaya, R. & Reinberg, D. Elongation by RNA polymerase II: the short and long of it. Genes Dev. 18, 2437–2468 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Fuchs, G. et al. 4sUDRB-seq: measuring genomewide transcriptional elongation rates and initiation frequencies within cells. Genome Biol. 15, R69 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Singh, J. & Padgett, R.A. Rates of in situ transcription and splicing in large human genes. Nat. Struct. Mol. Biol. 16, 1128–1133 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Melvin, W.T., Milne, H.B., Slater, A.A., Allen, H.J. & Keir, H.M. Incorporation of 6-thioguanosine and 4-thiouridine into RNA. Application to isolation of newly synthesised RNA by affinity chromatography. Eur. J. Biochem. 92, 373–379 (1978).

    Article  CAS  PubMed  Google Scholar 

  14. Fuchs, G. et al. RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation. Mol. Cell 46, 662–673 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, T. & Dent, S.Y. Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat. Rev. Genet. 15, 93–106 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Bester, A.C. et al. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145, 435–446 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ward, P.S. & Thompson, C.B. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21, 297–308 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin, C. et al. AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol. Cell 37, 429–437 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marazzi, I. et al. Suppression of the antiviral response by an influenza histone mimic. Nature 483, 428–433 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ehrensberger, A.H., Kelly, G.P. & Svejstrup, J.Q. Mechanistic interpretation of promoter-proximal peaks and RNAPII density maps. Cell 154, 713–715 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Veloso, A. et al. Rate of elongation by RNA polymerase II is associated with specific gene features and epigenetic modifications. Genome Res. 24, 896–905 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saponaro, M. et al. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. Cell 157, 1037–1049 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jonkers, I., Kwak, H. & Lis, J.T. Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons. eLife 3, e02407 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Palangat, M. & Larson, D.R. Complexity of RNA polymerase II elongation dynamics. Biochim. Biophys. Acta 1819, 667–672 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Windhager, L. et al. Ultrashort and progressive 4sU tagging reveals key characteristics of RNA processing at nucleotide resolution. Genome Res. 22, 2031–2042 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fuchs, G., Hollander, D., Voichek, Y., Ast, G. & Oren, M. Cotranscriptional histone H2B monoubiquitylation is tightly coupled with RNA polymerase II elongation rate. Genome Res. 24, 1572–1583 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cleary, M.D., Meiering, C.D., Jan, E., Guymon, R. & Boothroyd, J.C. Biosynthetic labeling of RNA with uracil phosphoribosyltransferase allows cell-specific microarray analysis of mRNA synthesis and decay. Nat. Biotechnol. 23, 232–237 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Danko, C.G. et al. Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells. Mol. Cell 50, 212–222 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D.R. Bublik, E. Kotler and L. Golomb for helpful discussions. This work was supported in part by grant 293438 (RUBICAN) from the European Research Council and the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation. M.O. is an incumbent of the Andre Lwoff chair in molecular biology.

Author information

Authors and Affiliations

Authors

Contributions

G.F., M.R. and M.O. developed the protocol; G.F., Y.V. and M.O. wrote the manuscript; Y.V., S.B., S.G. and I.A. contributed to protocol development.

Corresponding author

Correspondence to Moshe Oren.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1: Primer sequences.

List of primers and their sequences used for qRT-PCR validation (Steps 16 and 62) examples shown in Figures 3 and 4. (XLSX 11 kb)

Supplementary Software: Scripts for bioinformatics analysis.

Compressed file containing the scripts: reads2chr.cc and find_boundary_4sUDRBseq.m, needed for the bioinformatics analysis (Steps 66-72). (ZIP 3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuchs, G., Voichek, Y., Rabani, M. et al. Simultaneous measurement of genome-wide transcription elongation speeds and rates of RNA polymerase II transition into active elongation with 4sUDRB-seq. Nat Protoc 10, 605–618 (2015). https://doi.org/10.1038/nprot.2015.035

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.035

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing