Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The C-terminal half of the anti-sigma factor, FlgM, becomes structured when bound to its target, σ28

Abstract

The interaction between the flagellum specific sigma factor, σ28, and its inhibitor, FlgM, was examined using multidimensional heteronuclear NMR. Here we observe that free FlgM is mostly unfolded, but about 50% of the residues become structured when bound to σ28. Our analysis suggests that the σ28 binding domain of FlgM is contained within the last 57 amino acids of the protein while the first 40 amino acids are unstructured in both the free and bound states. Genetic analysis of flgM mutants that fail to inhibit σ28 activity reveal amino acid changes that are also isolated to the C-terminal 57 residues of FlgM. We postulate that the lack of structure in free and bound FlgM is important to its role as an exported protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Macnab, R.M. & Parkinson, J.S. Genetic analysis of the bacterial f lagellum. Trends Genet. 7, 196–200 (1991).

    Article  CAS  Google Scholar 

  2. Trachtenberg, S. & DeRosier, D.J. Three-dimensional structure of the frozen-hydrated flagellar filament. J. Mol. Biol. 195, 581–601 (1987).

    Article  CAS  Google Scholar 

  3. lino, T. Polarity of flagellar growth in Salmonella. J. Gen. Microbiol. 56, 227–239 (1969).

    Article  Google Scholar 

  4. Ohnishi, K., Kutsukake, K., Suzuki, H. & lino, T. Gene fliA encodes an alternative sigma factor specific for flagellar operons in Salmonella typhimurium. Mol. Gen. Genet. 221, 139–147 (1990).

    Article  CAS  Google Scholar 

  5. Ohnishi, K., Kutsukake, K., Suzuki, H. & lino, T. A novel transcriptional regulation mechanism in the flagellar regulon of Salmonella typhimurium: an anti-sigma factor inhibits the activity of the flagellum-specific sigma factor,σF. Mol. Microbiol. 6, 3149–3157 (1992).

    Article  CAS  Google Scholar 

  6. Hughes, K.T., Gillen, K.L., Semon, M.J. & Karlinsey, J.E. Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262, 1277–1280 (1993).

    Article  CAS  Google Scholar 

  7. Kutsukake, K. Excretion of the anti-sigma factor through a flagellar substructure couples flagellar gene expression with flagellar assembly in Salmonella typhimurium. Mol. Gen. Genet. 234, 605–612 (1994).

    Google Scholar 

  8. Ruiz, T., Francis, N.R., Morgan, D.G. & DeRosier, D.J. Size of the export channel in the flagellar filament of Salmonella typhimurium. Ultra microscopy 49, 417–425 (1993).

    Article  CAS  Google Scholar 

  9. Kay, L.E., Torchia, D.A. & Bax, A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28, 8972–8979 (1989).

    Article  CAS  Google Scholar 

  10. Wüthrich, K. NMR of Proteins and Nucleic Acids (Wiley, New York, 1986).

    Book  Google Scholar 

  11. Aizawa, S.I., Vonderviszt, F., Ishima, I. & Akasaka, K. Termini of Salmonella flagellin are disordered and become organized upon polymerization into flagellar filament. J. Mol. Biol. 211, 673–677 (1990).

    Article  CAS  Google Scholar 

  12. Bychkova, V.E., Pain, R.H. & Ptitsyn, O.B. The “molten globule” state is involved in the translocation of proteins across membranes. FEBS letts. 238, 231–234 (1988).

    Article  CAS  Google Scholar 

  13. Randall, L.L. & Hardy, J.S. Correlation of competence for export with lack of tertiary structure of the mature species: a study in vivo of maltose binding protein in E. coil. Cell 46, 921–928 (1986).

    Article  CAS  Google Scholar 

  14. Driessen, A.J. How proteins cross the bacterial cytoplasmic membrane. J. Membr. Biol. 142, 145–159 (1994).

    Article  CAS  Google Scholar 

  15. Verner, K. & Schatz, G. Import of an incompletely folded precursor protein into isolated mitochondria requires an energized inner membrane, but no added ATP. EMBO J. 6, 2449–2456 (1987).

    Article  CAS  Google Scholar 

  16. Iyoda, S. & Kutsukake, K. Molecular dissection of the flagellum-specific anti-sigma factor, FlgM of Salmonella typhimurium. Mol. Gen. Genet. 249, 417–424 (1995).

    CAS  PubMed  Google Scholar 

  17. Macnab, R.M. Genetics and biogenesis of bacterial flagella. Annu. Rev. Genet. 26, 131–158 (1992).

    Article  CAS  Google Scholar 

  18. Casanova, J.-L., Pannetier, C., Jaulin, C. & Kourilsky, P. Optimal conditions for directly sequencing double-stranded PCR products with Sequenase. Nucl. Acids Res. 18, 4028 (1990). (AUTHOR: PAGE RANGE?)

    Article  CAS  Google Scholar 

  19. Marion, D., Kay, L.E., Sparks, S.W., Torchia, D.A. & Bax, A. Three-dimensional heteronuclear NMR of 15N-labeled proteins. J. Amer. Chem. Soc. 111, 1515–1517 (989).

    Article  Google Scholar 

  20. Zuiderweg, E.R.P. & Fesik, S.W. Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a. Biochemistry 28, 2387–2391 (1989).

    Article  CAS  Google Scholar 

  21. Cavanagh, J., Chazin, W.J. & Ranee, M. The time dependence of coherence transfer in homonuclear isotropic mixing experiments. J. Magn. Reson. 87, 110–131 (1989).

    Google Scholar 

  22. Marion, D. et al.overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by the use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. Biochemistry 28, 6150–6156 (1989).

    Article  CAS  Google Scholar 

  23. Muhandriam, D.R. & Kay, L.E. Gradient-enhanced triple-resonance three-dimensional NMR experiments with improved sensitivity. J. Magn. Reson. B103, 203–216 (1994).

    Article  Google Scholar 

  24. Kay, L.E., Xu, G.Y. & Yamazaki, T. Enhanced-sensitivity triple-resonance spectroscopy with minimal H2O saturation. J. Magn. Res. A109, 129–133 (1994).

    Article  Google Scholar 

  25. Bodenhausen, G. & Ruben, D.J. Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Lett. 69, 185–199 (1980).

    Article  CAS  Google Scholar 

  26. Kay, L.E., Keifer, P. & Saarinen, T. Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J. Am. Chem. Soc. 114, 10663–10665 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daughdrill, G., Chadsey, M., Karlinsey, J. et al. The C-terminal half of the anti-sigma factor, FlgM, becomes structured when bound to its target, σ28. Nat Struct Mol Biol 4, 285–291 (1997). https://doi.org/10.1038/nsb0497-285

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0497-285

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing