Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for an obligatory intermediate in the folding of lnterleukin-1β

Abstract

The folding of the β-sheet protein, interleukin-1β, was examined at pH 5.0 and 25 °C using pulse-labelling hydrogen exchange and electrospray ionization mass spectrometric analysis, as well as stopped-flow circular dichroism and fluorescence spectroscopies. The first detectable event is the formation of a partially folded intermediate in a kinetic step with a relaxation time of 126 ± 26 ms. There is a lag in native protein production of at least 400 ms. Optical studies indicate that the intermediate is converted to the native species in a reaction with a relaxation time of 43 ± 5 s. The kinetic rates determined from stopped-flow fluorescence, circular dichroism and pulse-labelling experiments are similar and consistent with a simple sequential model for the folding pathway of interleukin-1β at pH 5.0 and 25 °C. Taken together, our data provide kinetic evidence that formation of the native state of interleukin-1β proceeds through an obligatory intermediate. We explain our results in terms of the classical and new views of protein folding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sosnick, T.R., Hiller, M.R. & Englander, S.W. The barriers in protein folding. Nature Struct. Biol. 1, 149–156 (1994).

    Article  CAS  Google Scholar 

  2. Creighton, I.E. The energetic ups and downs of protein folding. Nature Struct. Biol. 1, 135–138 (1994).

    Article  CAS  Google Scholar 

  3. Creighton, T.E. Up the kinetic pathway. Nature 356, 194–195 (1992).

    Article  CAS  Google Scholar 

  4. Creighton, T.E. How important is the molten globule for correct protein folding? Trends Biochem. Sci. 22, 6–10 (1997).

    Article  CAS  Google Scholar 

  5. Baldwin, R.L. On-pathway versus off-pathway folding intermediates. Folding and Design 1, R1–R8 (1996).

    Article  CAS  Google Scholar 

  6. Baldwin, R.L. The nature of protein folding pathways: the classical versus the new view. J.Biomol.NMR 5, 103–109 (1995).

    Article  CAS  Google Scholar 

  7. Kiefhaber, T. Kinetic traps in lysozyme folding. Proc. Natl. Acad. Sci. USA 92, 9029–9033 (1995).

    Article  CAS  Google Scholar 

  8. Dill, K.A. & Chan, H.S. From Levinthal to pathways to funnels. Nature Struct. Biol. 4, 10–19 (1997).

    Article  CAS  Google Scholar 

  9. Wolynes, P.G., Luthey-Schulten, Z. & Onuchic, J.N. Fast-folding experiments and the topography of protein folding energy landscapes. Chem. and Biol. 3, 425–432 (1996).

    Article  CAS  Google Scholar 

  10. Zitzewitz, J.A. & Matthews, R.C. Protein engineering strategies in examining protein folding intermediates. Curr. Op. Struct. Biol. 3, 594–600 (1993).

    Article  CAS  Google Scholar 

  11. Bai, Y., Sosnick, T.R., Mayne, L. & Englander, S.W. Protein folding intermediates: Native-state hydrogen exchange. Science 269, 192–197 (1995).

    Article  CAS  Google Scholar 

  12. Chamberlain, A.K., Handel, T.M. & Marqusee, S. Detection of rare partially folded molecules in equilibrium with the native conformation of RNaseH. Nature Struct. Biol. 3, 782–787 (1996).

    Article  CAS  Google Scholar 

  13. Baldwin, R.L. Finding intermediates in protein folding. Bioessays 16, 207–210 (1994).

    Article  CAS  Google Scholar 

  14. Kuwajima, K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins: Struct. Funct. Genet. 6, 87–103 (1989).

    Article  CAS  Google Scholar 

  15. Matthews, C.R. Pathways of protein folding. Annu. Rev. Biochem. 62, 653–683 (1993).

    Article  CAS  Google Scholar 

  16. Miranker, A., Robinson, C.V., Radford, S.E., Aplin, R.T. & Dobson, C.M. Detection of transient protein folding populations by mass spectrometry. Science 262, 896–900 (1993).

    Article  CAS  Google Scholar 

  17. Khorasanizadeh, S., Peters, I.D. & Roder, H. Evidence for a three-state model of protein folding from kinetic analysis of ubiquitin variants with altered core residues. Nature Struct. Biol. 3, 193–205 (1996).

    Article  CAS  Google Scholar 

  18. Pain, R.H. Mechanisms of Protein Folding (eds Hames, B. D., & Glover, D.M.,) 15–17 (IRL Press, New York; 1994).

    Google Scholar 

  19. Meyers, C.A. et al. Purification and characterization of human recombinant interleukin-1 beta. J. Biol. Chem. 262, 11176–11181 (1987).

    CAS  PubMed  Google Scholar 

  20. Zhang, J.-X. & Goldenberg, D.P. Amino acid replacement that eliminates kinetic traps in the folding pathway of pancreatic trypisin inhibitor. Biochemistry 32, 14075–14081 (1993).

    Article  CAS  Google Scholar 

  21. Dobson, C.M. Solid evidence for molten globules. Curr. Biol. 4, 636–640 (1994).

    Article  CAS  Google Scholar 

  22. Miranker, A., Radford, S.E., Karplus, M. & Dobson, C.M. Demonstration by NMR of folding domains in lysozyme. Nature 349, 633–636 (1991).

    Article  CAS  Google Scholar 

  23. Radford, S.E., Dobson, C.M. & Evans, P.A. The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature 358, 302–307 (1992).

    Article  CAS  Google Scholar 

  24. Elöve, G.A. & Roder, H. Structure and stability of cytochrome c folding intermediates. in Protein Refolding (ed Georgiou, G. a.D.-B.-.C, E.) 51–63 (American Chemical Society, Washington, D.C.; 1991).

    Google Scholar 

  25. Chrunyk, B.A., Evans, J., Lillquist, J., Young, P. & Wetzel, R. Inclusion body formation and protein stability in sequence variants of interleukin-1 β. J. Biol. Chem. 268, 18053–18061 (1993).

    CAS  PubMed  Google Scholar 

  26. Chrunyk, B.A. & Wetzel, R. Breakdown in the relationship between thermal and thermodynamic stability in an interleukin-1β point mutant modified in a surface loop. Prat. Engng. 6, 733–738 (1993).

    Article  CAS  Google Scholar 

  27. Chrunyk, B.A., Evans, J. & Wetzel, R. Probing the Role of Protein Folding in Inclusion Body Formation. in Protein folding in vivo and in vitro (ed. Cleland, J.L.) 46–58 (American Chemical Society, Washington, D.C.; 1993).

    Chapter  Google Scholar 

  28. Varley, P. et al. Kinetics of folding of the all-β sheet protein interleukin-1 β. Science 260, 1110–1113 (1993).

    Article  CAS  Google Scholar 

  29. Craig, S., Schmeissner, U., Wingfield, P. & Pain, R.H. Conformation, stability, and folding of interleukin 1β. Biochemistry 26, 3570–3576 (1987).

    Article  CAS  Google Scholar 

  30. Jennings, P.A. & Wright, P.E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science 262, 892–896 (1993).

    Article  CAS  Google Scholar 

  31. Kuwajima, K., Garvey, E.P., Finn, B.E., Matthers, C.R. & Sugai, S. Transient intermediate in the folding of dihydrofolate reductase as detected by far-ultraviolet circular dichroism spectroscopy. Biochemistry 30, 7693–7703 (1991).

    Article  CAS  Google Scholar 

  32. Kuwajima, K., Mitani, M. & Sugai, S. Characterization of the critical state in protein folding. Effects of guanidine hydrochloride and specific Ca2+ binding on the folding kinetics of α-lactalbumin. J. Mol. Biol. 206, 547–561 (1989).

    Article  CAS  Google Scholar 

  33. Raschke, T.M. & Marqusee, S.M. The kinetic folding intermediate of ribonuclease H resembles the acid molten globule and partially unfolded molecules detected under native conditions. Nature Struct. Biol. 4, 298–304 (1997).

    Article  CAS  Google Scholar 

  34. Knutson, J.R., Beecham, J.M. & Brand, L. Simultaneous analysis of multiple fluorescence decay curves: a global approach. Chem. Phys. Lett. 102, 501–507 (1983).

    Article  CAS  Google Scholar 

  35. Kim, P.S. & Baldwin, R.L. Structural intermediates trapped during the folding of ribonuclease A by amide proton exchange. Biochemistry 19, 6124–6129 (1980).

    Article  CAS  Google Scholar 

  36. Jones, B.E. & Matthews, C.R. Early intermediates in the folding of dihydrofolate reductase from Escherichia coli detected by hydrogen exchange and NMR. Prot. Sci. 4, 167–177 (1994).

    Article  Google Scholar 

  37. Englander, S.W. & Mayne, L. Protein folding studied using hydrogen-exchange labeling and two–dimensional NMR. Annu. Rev. Biophys. Biomol. Struct. 21, 243–265 (1992).

    Article  CAS  Google Scholar 

  38. Katta, V. & Chait, B.T. Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Comm. Mass Spec. 5, 214–217 (1991).

    Article  CAS  Google Scholar 

  39. Kiefhaber, T., Quaas, R., Hahn, U. & Schmid, F.X. Folding of robonuclease T1. 1. Existence of multiple unfolded states created by proline isomerization. Biochemistry 29, 3053–3061 (1990).

    Article  CAS  Google Scholar 

  40. Kiefhaber, T., Grunert, H.-P., Hahn, U. & Schmid, F.X. Replacement of a cis proline simplifies the mechanism of ribonuclease Tl folding. Biochemistry 29, 6475–6480 (1990).

    Article  CAS  Google Scholar 

  41. Kiefhaber, T. & Schmid, F.X. Kinetic coupling between protein folding and prolyl isomerization. I. Folding of robonuclease A and ribonuclease Tl. J. Mol. Biol. 224, 231–240 (1992).

    Article  CAS  Google Scholar 

  42. Ikeguchi, M., Kuwajima, K., Mitani, M. & Sugai, S. Evidence for identity between the equilibrium unfolding intermediate and a transient folding intermediate: a comparative study of the folding reaction of α-lactoalbumin and lysozyme. Biochemistry 25, 6965–6972 (1986).

    Article  CAS  Google Scholar 

  43. Roder, H., Elöve, G.A. & Englander, S.W. Structural characterization of folding intermediates in cytochrome C by H-exchange labelling and proton NMR. Nature 335, 700–704 (1988).

    Article  CAS  Google Scholar 

  44. Udgaonkar, J.B. & Baldwin, R.L. Early folding intermediate of ribonuclease A. Proc. Natl. Acad. Sci. USA 87, 8197–8201 (1990).

    Article  CAS  Google Scholar 

  45. Utiyama, H. & Baldwin, R.L. Kinetic Mechanisms of Protein Folding. Meth. Enz. 131, 51–70 (1986).

    Article  CAS  Google Scholar 

  46. Kuwajima, K., Hiraoka, Y., Ikeguchi, M. & Sugai, S. Comparison of the transient folding intermediates in lysozyme and α-lactalbumin. Biochemistry 24, 874–881 (1985).

    Article  CAS  Google Scholar 

  47. Jones, B.E., Jennings, P.A., Pierre, R.A. & Matthews, C.R. Development of nonpolar surfaces in the folding of Escherichia coli dihydrofolate reductase detected by 1-anilinonaphthalene-8-sulfonate binding. Biochemistry 33, 15250–15258 (1994).

    Article  CAS  Google Scholar 

  48. Jones, B.E., Beechem, J.M. & Matthews, C.R. Local and global dynamics during the folding of Escherichia coli dihydrofolate reductase by time-resolved fluorsecence spectroscopy. Biochemistry 34, 1867–1877 (1995).

    Article  CAS  Google Scholar 

  49. Mann, C.J., Shao, X. & Matthews, C.R. Characterization of the slow folding reactions of trp aporepressor from Escherichia coli by mutational analysis of prolines and catalysis by a peptidyl-prolyl isomerase. Biochemistry 34, 14573–14580 (1995).

    Article  CAS  Google Scholar 

  50. Smith, D.L. & Zhang, Z. Probing monovalent structural features of proteins by mass spectrometry. Mass. Specfrom. Rev. 13, 411–429 (1994).

    Article  CAS  Google Scholar 

  51. Maddams, W.F. The scope and limitations of curve fitting. Appl. Spectroscopy 34, 245–267 (1980).

    Article  CAS  Google Scholar 

  52. Barshop, B.A., Wrenn, R.F. & Frieden, C. Analysis of numerical methods for computer simulation of kinetic processes: Development of KINSIM-A flexible, portable system. Anal. Biochem. 130, 134–145 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia A. Jennings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heidary, D., Gross, L., Roy, M. et al. Evidence for an obligatory intermediate in the folding of lnterleukin-1β. Nat Struct Mol Biol 4, 725–731 (1997). https://doi.org/10.1038/nsb0997-725

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0997-725

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing