Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Confirmation of the hierarchical folding of RNase H: a protein engineering study

A Correction to this article was published on 01 May 2000

Abstract

The kinetic intermediate of RNase H is structured in a core region of the protein. To probe the role of this intermediate in the folding of RNase H, the folding kinetics of mutant proteins with altered native state stabilities were investigated. Mutations within the folding core destabilize the kinetic intermediate and slow refolding in a manner consistent with an obligatory intermediate model. Mutations outside of the folding core, however, do not affect the stability of the kinetic intermediate but do perturb the native state and transition state. These results indicate that interactions formed in the intermediate persist in the transition and native states and that RNase H folds through a hierarchical mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Location of mutation sites in RNase H.
Figure 2: Denaturant-dependent folding kinetics of folding core mutants.
Figure 3: Denaturant-dependent kinetics of mutants outside the folding core.
Figure 4: Reaction coordinate diagrams in 0 M urea for wt* and mutant RNases H.

Similar content being viewed by others

References

  1. Kim, P.S. & Baldwin, R.L. Annu. Rev. Biochem. 51, 459–489 (1982).

    Article  CAS  PubMed Central  Google Scholar 

  2. Kim, P.S. & Baldwin, R.L. Annu. Rev. Biochem. 59, 631–660 (1990).

    Article  CAS  PubMed Central  Google Scholar 

  3. Jennings, P.A. & Wright, P.E. Science 262, 892–896 (1993).

    Article  CAS  Google Scholar 

  4. Raschke, T.M. & Marqusee, S. Nature Struct. Biol. 4, 298–304 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  5. Matouschek, A., Serrano, L. & Fersht, A.R. J. Mol. Biol. 224, 819– 835 (1992).

    Article  CAS  Google Scholar 

  6. Khorasanizadeh, S., Peters, I.D. & Roder, H. Nature Struct. Biol. 3, 193– 205 (1996).

    Article  CAS  Google Scholar 

  7. Parker, M.J., Sessions, R.B., Badcoe, I.G. & Clarke, A.R. Fold. Des. 1, 145–156 ( 1996).

    Article  CAS  Google Scholar 

  8. Jackson, S.E. Fold. Des. 3, R81–R91 ( 1998).

    Article  CAS  Google Scholar 

  9. Schmid, F.X. & Blaschek, H. Eur. J. Biochem. 114 , 111–117 (1981).

    Article  CAS  Google Scholar 

  10. Evans, P.A., Kautz, R.A., Fox, R.O. & Dobson, C.M. Biochemistry 28, 362–370 ( 1989).

    Article  CAS  Google Scholar 

  11. Weissman, J.S. & Kim, P.S. Nature Struct. Biol. 2, 1123–1130 ( 1995).

    Article  CAS  Google Scholar 

  12. Creighton, T.E., Darby, N.J. & Kemmink, J. FASEB J. 10, 110– 118 (1996).

    Article  CAS  Google Scholar 

  13. Yeh, S.R., Takahashi, S., Fan, B. & Rousseau, D.L. Nature Struct. Biol. 4, 51–56 ( 1997).

    Article  CAS  Google Scholar 

  14. Yeh, S.R. & Rousseau, D.L. Nature Struct. Biol. 5, 222–228 (1998).

    Article  CAS  Google Scholar 

  15. Shakhnovich, E.I. Curr. Opin. Struct. Biol. 7, 29–40 (1997).

    Article  CAS  Google Scholar 

  16. Chan, H.S. & Dill, K.A. Proteins 30, 2–33 (1998).

    Article  CAS  Google Scholar 

  17. Sosnick, T.R., Mayne, L. & Englander, S.W. Proteins 24, 413– 426 (1996).

    Article  CAS  Google Scholar 

  18. Sosnick, T.R., Shtilerman, M.D., Mayne, L. & Englander, S.W. Proc. Natl. Acad. Sci. USA 94, 8545– 8550 (1997).

    Article  CAS  Google Scholar 

  19. Qi, P.X., Sosnick, T.R. & Englander, S.W. Nature Struct. Biol. 5, 882 –884 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  20. Dabora, J.M. & Marqusee, S. Protein Sci. 3, 1401–1408 (1994).

    Article  CAS  PubMed Central  Google Scholar 

  21. Dabora, J.M., Pelton, J.G. & Marqusee, S. Biochemistry 35, 11951– 11958 (1996).

    Article  CAS  Google Scholar 

  22. Chamberlain, A.K., Handel, T.M. & Marqusee, S. Nature Struct. Biol. 3, 782– 787 (1996).

    Article  CAS  PubMed Central  Google Scholar 

  23. Yamasaki, K., Ogasahara, K., Yutani, K., Oobatake, M. & Kanaya, S. Biochemistry 34, 16552–16562 (1995).

    Article  CAS  Google Scholar 

  24. Hollien, J. & Marqusee, S. Biochemistry 38, 3831–3836 (1999).

    Article  CAS  Google Scholar 

  25. Crouch, R.J. & Dirksen, M. In Nucleases (ed. Linn, S.) 211–241 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York; 1982).

    Google Scholar 

  26. Baldwin, R.L. Fold. Des. 1, R1–R8 ( 1996).

    Article  CAS  Google Scholar 

  27. Yang, W., Hendrickson, W.A., Crouch, R.J. & Satow, Y. Science 249, 1398–1405 ( 1990).

    Article  CAS  Google Scholar 

  28. Katayanagi, K. et al. Nature 347, 306–309 (1990).

    Article  CAS  Google Scholar 

  29. Katayanagi, K. et al. J. Mol. Biol. 223, 1029– 1052 (1992).

    Article  CAS  Google Scholar 

  30. O'Neil, K.T. & DeGrado, W.F. Science 250, 646–651 (1990).

    Article  CAS  Google Scholar 

  31. Kanaya, S., Kimura, S., Katsuda, C. & Ikehara, M. Biochem. J. 271, 59–66 (1990).

    Article  CAS  PubMed Central  Google Scholar 

  32. Katayanagi, K., Okumura, M. & Morikawa, K. Proteins 17, 337– 346 (1993).

    Article  CAS  Google Scholar 

  33. Kanaya, S., Oobatake, M. & Liu, Y. J. Biol. Chem. 271, 32729– 32736 (1996).

    Article  CAS  Google Scholar 

  34. Oda, Y. et al. Biochemistry 33, 5275–5284 (1994).

    Article  CAS  Google Scholar 

  35. Santoro, M.M. & Bolen, D.W. Biochemistry 27, 8063–8068 (1988).

    Article  CAS  PubMed Central  Google Scholar 

  36. Kuwajima, K., Yamaya, H., Miwa, S., Sugai, S. & Nagamura, T. FEBS Lett. 221, 115– 118 (1987).

    Article  CAS  Google Scholar 

  37. Fersht, A.R., Matouschek, A. & Serrano, L. J. Mol. Biol. 224, 771– 782 (1992).

    Article  CAS  Google Scholar 

  38. Serrano, L., Matouschek, A. & Fersht, A.R. J. Mol. Biol. 224, 805– 818 (1992).

    Article  CAS  PubMed Central  Google Scholar 

  39. Munoz, V., Lopez, E.M., Jager, M. & Serrano, L. Biochemistry 33, 5858–5866 (1994).

    Article  CAS  Google Scholar 

  40. Lopez-Hernandez, E. & Serrano, L. Fold. Des. 1, 43–55 (1996).

    Article  CAS  Google Scholar 

  41. Cavagnero, S., Dyson, H.J. & Wright, P.E. J. Mol. Biol. 285, 269– 282 (1999).

    Article  CAS  Google Scholar 

  42. Kunkel, T.A., Roberts, J.D. & Zakour, R.A. Methods Enzymol. 154, 367– 382 (1987).

    Article  CAS  Google Scholar 

  43. Black, C.B. & Cowan, J.A. Inorg. Chem. 33, 5805–5808 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Kelly and Aviv Instrument Company for use of their stopped-flow instruments, D. King for the mass spectra, and K. Fischer, V. Pande and M. Parker for discussion and critical reading of the manuscript. This work was supported by a grant from the National Institutes of Health and a Beckman Young Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Marqusee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raschke, T., Kho, J. & Marqusee, S. Confirmation of the hierarchical folding of RNase H: a protein engineering study. Nat Struct Mol Biol 6, 825–831 (1999). https://doi.org/10.1038/12277

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12277

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing