Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Does trifluoroethanol affect folding pathways and can it be used as a probe of structure in transition states?

Abstract

Nonaqueous co-solvents, particularly 2,2,2-trifluoroethanol (TFE), have been used as tools to study protein folding. By analyzing FKBP12, an α/β-protein that folds with two-state kinetics, we have been able to address three key questions concerning the use of TFE. First, does TFE perturb the folding pathway? Second, can the observed changes in the rate of folding and unfolding in TFE be attributed to a change in free energy of a single state? Finally, can TFE be used to infer information on secondary structure formation in the transition state? Protein engineering experiments on FKBP12, coupled with folding and unfolding experiments in 0% and 9.6% TFE, conclusively show that TFE does not perturb the folding pathway of this protein. Our results also suggest that the changes in folding and unfolding rates observed in 9.6% TFE are due to a global effect of TFE on the protein, rather than the stabilization of any elements of secondary structure in the transition state. Thus, studies with TFE and other co-solvents can be accurately interpreted only when combined with other techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Typical urea-induced denaturation curves of wild-type () and mutant FKBP12 protein (V101A ▪; E61A, □; V98A, ) in 9.6% TFE (v/v).
Figure 2: a, Comparison of ΦF-values in 3.9 M urea for FKBP12 protein in 0% TFE (solid black bars) and 9.6% TFE (hatched bar).
Figure 3: Free energy diagrams for the folding of FKBP12 protein in 0% (black lines) and 9.6% (red lines) TFE.

Similar content being viewed by others

References

  1. Fersht, A.R., Matouschek, A. & Serrano, L. J. Mol. Biol. 224, 771– 782 (1992).

    Article  CAS  Google Scholar 

  2. Itzhaki, L.S., Otzen, D.E. & Fersht, A.R. J. Mol. Biol. 254, 260– 288 (1995).

    Article  CAS  Google Scholar 

  3. Chen, B., Baase, W.A. & Schellman, J.A. Biochemistry 26, 691– 699 (1989).

    Article  Google Scholar 

  4. Tanford, C. Adv. Prot. Chem. 23, 121–282 (1968).

    CAS  Google Scholar 

  5. Tanford, C. Adv. Prot. Chem. 24, 1–95 (1970).

    CAS  Google Scholar 

  6. Chiti, F. et al. J. Mol. Biol. 283, 883– 891 (1998).

    Article  PubMed Central  Google Scholar 

  7. Chiti, F. et al. Nature Struct. Biol. 6, 380– 387 (1999).

    Article  CAS  Google Scholar 

  8. Blanco, F., Rivas, G. & Serrano, L. Nature Struct. Biology 1, 584 –590 (1994).

    Article  CAS  Google Scholar 

  9. Jasanoff, A. & Fersht, A.R. Biochemistry 33, 2129–2135 (1994).

    Article  CAS  PubMed Central  Google Scholar 

  10. Schonbrunner, E.R., Wey, J., Engels, J., Georg, H. & Kiefhaber, T. J. Mol. Biol. 260, 432– 445 (1994).

    Article  Google Scholar 

  11. Hamada, D. & Goto, Y. J. Mol. Biol. 269, 479–487 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  12. Kentsis, A. & Sosnick, T.R. Biochemistry 37, 14613–14622 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  13. Lu, H., Buck, M., Radford, S.E. & Dobson, C.M. J. Mol. Biol. 265, 112–117 ( 1997).

    Article  CAS  Google Scholar 

  14. Zerovnik, E., Virden, R., Jerala, R., Turk, V. & Waltho, J.P. Proteins 32, 296– 303 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  15. Fulton, K.F., Main, E.R.G., Daggett, V. & Jackson, S.E. J. Mol. Biol. 291, 429–444 (1999).

    Article  PubMed Central  Google Scholar 

  16. Main, E.R.G., Fulton, K.F. & Jackson, S.E. J. Mol. Biol. 291, 445– 461 (1999).

    Article  PubMed Central  Google Scholar 

  17. Ionescu, R.M. & Matthews, C.R. Nature Struct. Biol. 6, 304–307 (1999).

    Article  CAS  Google Scholar 

  18. Walgers, R., Lee, T.C. & Cammers-Goodwin, A. J. Am. Chem. Soc. 120, 5073– 5079 (1998).

    Article  CAS  Google Scholar 

  19. Storrs, R.W., Truckses, D. & Wemmer, D.E. Biopolymers 32, 1695– 1702 (1992).

    Article  CAS  PubMed Central  Google Scholar 

  20. Luidens, M.K., Figge, J., Breese, K. & Vajda, S. Biomolecules 39, 367–376 (1996).

    CAS  Google Scholar 

  21. Wang, A. & Bolen, D.W. Biochemistry 36, 9101–9108 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  22. Main, E.R.G., Fulton, K.F. & Jackson, S.E. Biochemistry 37, 6145– 6153 (1998).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.E.J. is a Royal Society University Research Fellow and E.R.G.M. is supported by a BBSRC studentship. We thank F. Chiti and C. Dobson for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie E. Jackson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Main, E., Jackson, S. Does trifluoroethanol affect folding pathways and can it be used as a probe of structure in transition states?. Nat Struct Mol Biol 6, 831–835 (1999). https://doi.org/10.1038/12287

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12287

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing