Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of fibrillar collagen trimerization and related genetic disorders

Abstract

The C propeptides of fibrillar procollagens have crucial roles in tissue growth and repair by controlling both the intracellular assembly of procollagen molecules and the extracellular assembly of collagen fibrils. Mutations in C propeptides are associated with several, often lethal, genetic disorders affecting bone, cartilage, blood vessels and skin. Here we report the crystal structure of a C-propeptide domain from human procollagen III. It reveals an exquisite structural mechanism of chain recognition during intracellular trimerization of the procollagen molecule. It also gives insights into why some types of collagen consist of three identical polypeptide chains, whereas others do not. Finally, the data show striking correlations between the sites of numerous disease-related mutations in different C-propeptide domains and the degree of phenotype severity. The results have broad implications for understanding genetic disorders of connective tissues and designing new therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the C-propeptide trimer of human procollagen III.
Figure 2: Details of the interaction interface.
Figure 3: Structural alignment of the three chains of the proα1(III) C-propeptide trimer.
Figure 4: Positions of known missense mutations in the C propeptides of fibrillar procollagens I, II, III and V, mapped onto the structure of the proα1(III) C propeptide.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Bateman, J.F., Boot-Handford, R.P. & Lamandé, S.R. Genetic diseases of connective tissues: cellular and extracellular effects of ECM mutations. Nat. Rev. Genet. 10, 173–183 (2009).

    Article  CAS  Google Scholar 

  2. Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol. 3, a004978 (2011).

    Article  Google Scholar 

  3. McLaughlin, S.H. & Bulleid, N.J. Molecular recognition in procollagen chain assembly. Matrix Biol. 16, 369–377 (1998).

    Article  CAS  Google Scholar 

  4. Bottomley, M.J., Batten, M.R., Lumb, R.A. & Bulleid, N.J. Quality control in the endoplasmic reticulum. PDI mediates the ER retention of unassembled procollagen C-propeptides. Curr. Biol. 11, 1114–1118 (2001).

    Article  CAS  Google Scholar 

  5. Boudko, S.P., Engel, J. & Bachinger, H.P. The crucial role of trimerization domains in collagen folding. Int. J. Biochem. Cell Biol. 44, 21–32 (2012).

    Article  CAS  Google Scholar 

  6. Exposito, J.Y., Valcourt, U., Cluzel, C. & Lethias, C. The fibrillar collagen family. Int. J. Mol. Sci. 11, 407–426 (2010).

    Article  CAS  Google Scholar 

  7. Lees, J.F., Tasab, M. & Bulleid, N.J. Identification of the molecular recognition sequence which determines the type-specific assembly of procollagen. EMBO J. 16, 908–916 (1997).

    Article  CAS  Google Scholar 

  8. Kadler, K.E., Holmes, D.F., Trotter, J.A. & Chapman, J.A. Collagen fibril formation. Biochem. J. 316, 1–11 (1996).

    Article  CAS  Google Scholar 

  9. Canty, E.G. & Kadler, K.E. Procollagen trafficking, processing and fibrillogenesis. J. Cell Sci. 118, 1341–1353 (2005).

    Article  CAS  Google Scholar 

  10. Muir, A. & Greenspan, D.S. Metalloproteinases in Drosophila to humans that are central players in developmental processes. J. Biol. Chem. 286, 41905–41911 (2011).

    Article  CAS  Google Scholar 

  11. Vadon-Le Goff, S. et al. Procollagen C-proteinase enhancer stimulates procollagen processing by binding to the C-propeptide only. J. Biol. Chem. 286, 38932–38938 (2011).

    Article  CAS  Google Scholar 

  12. Wynn, T.A. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J. Clin. Invest. 117, 524–529 (2007).

    Article  CAS  Google Scholar 

  13. Wu, C.H., Walton, C.M. & Wu, G.Y. Propeptide-mediated regulation of procollagen synthesis in IMR- 90 human lung fibroblast cell cultures. J. Biol. Chem. 266, 2983–2987 (1991).

    CAS  PubMed  Google Scholar 

  14. Mizuno, M., Fujisawa, R. & Kuboki, E. The effect of carboxyl-terminal propeptide of type I collagen (C-propeptide) on collagen synthesis of preosteoblasts and osteoblasts. Calcif. Tissue Int. 67, 391–399 (2000).

    Article  CAS  Google Scholar 

  15. Davies, D. et al. Molecular characterisation of integrin-procollagen C-propeptide interactions. Eur. J. Biochem. 246, 274–282 (1997).

    Article  CAS  Google Scholar 

  16. Lindahl, K. et al. COL1 C-propeptide cleavage site mutations cause high bone mass osteogenesis imperfecta. Hum. Mutat. 32, 598–609 (2011).

    Article  CAS  Google Scholar 

  17. Van der Rest, M., Rosenberg, L.C., Olsen, B.R. & Poole, A.R. Chondrocalcin is identical with the C-propeptide of type II procollagen. Biochem. J. 237, 923–925 (1986).

    Article  CAS  Google Scholar 

  18. Lee, E.R., Smith, C.E. & Poole, A.R. Ultrastructural localization of the C-propeptide released from type II procollagen in fetal bovine growth plate cartilage. J. Histochem. Cytochem. 44, 433–443 (1996).

    Article  CAS  Google Scholar 

  19. Palmieri, D. et al. Procollagen I COOH-terminal fragment induces VEGF-A and CXCR4 expression in breast carcinoma cells. Exp. Cell Res. 314, 2289–2298 (2008).

    Article  CAS  Google Scholar 

  20. Vincourt, J.B. et al. C-propeptides of procollagens I α1 and II that differentially accumulate in enchondromas versus chondrosarcomas regulate tumor cell survival and migration. Cancer Res. 70, 4739–4748 (2010).

    Article  CAS  Google Scholar 

  21. McAlinden, A. α-helical coiled-coil oligomerization domains are almost ubiquitous in the collagen superfamily. J. Biol. Chem. 278, 42200–42207 (2003).

    Article  CAS  Google Scholar 

  22. Ricard-Blum, S. et al. Interaction properties of the procollagen C-proteinase enhancer protein shed light on the mechanism of stimulation of BMP-1. J. Biol. Chem. 277, 33864–33869 (2002).

    Article  CAS  Google Scholar 

  23. Holm, L. & Rosenstrom, P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–W549 (2010).

    Article  CAS  Google Scholar 

  24. Byers, P.H. Folding defects in fibrillar collagens. Philos. Trans. R. Soc. Lond. B Biol. Sci 356, 151–157 (2001).

    Article  CAS  Google Scholar 

  25. Pace, J.M., Kuslich, C.D., Willing, M.C. & Byers, P.H. Disruption of one intra-chain disulphide bond in the carboxyl-terminal propeptide of the proα1(I) chain of type I procollagen permits slow assembly and secretion of overmodified, but stable procollagen trimers and results in mild osteogenesis imperfecta. J. Med. Genet. 38, 443–449 (2001).

    Article  CAS  Google Scholar 

  26. Lim, A.L., Doyle, S.A., Balian, G. & Smith, B.D. Role of the pro-α(I) COOH-terminal region in assembly of type I collagen: truncation of the last 10 amino acid residues of pro-α2(I) chain prevents assembly of type I collagen heterotrimer. J. Cell. Biochem. 71, 216–232 (1998).

    Article  CAS  Google Scholar 

  27. Oliver, J.E., Thompson, E.M., Pope, F.M. & Nicholls, A.C. Mutation in the carboxy-terminal propeptide of the pro α1(1) chain of type I collagen in a child with severe osteogenesis imperfecta (OI type III): possible implications for protein folding. Hum. Mutat. 7, 318–326 (1996).

    Article  CAS  Google Scholar 

  28. Zankl, A. et al. Dominant negative mutations in the C-propeptide of COL2A1 cause platyspondylic lethal skeletal dysplasia, torrance type, and define a novel subfamily within the type 2 collagenopathies. Am. J. Med. Genet. A. 133A, 61–67 (2005).

    Article  Google Scholar 

  29. Lamandé, S.R. et al. Endoplasmic reticulum-mediated quality control of type I collagen production by cells from osteogenesis imperfecta patients with mutations in the pro α1(I) chain carboxyl- terminal propeptide which impair subunit assembly. J. Biol. Chem. 270, 8642–8649 (1995).

    Article  Google Scholar 

  30. Nishimura, G. et al. Identification of COL2A1 mutations in platyspondylic skeletal dysplasia, Torrance type. J. Med. Genet. 41, 75–79 (2004).

    Article  CAS  Google Scholar 

  31. Chessler, S.D., Wallis, G.A. & Byers, P.H. Mutations in the carboxyl-terminal propeptide of the pro-α-1(I) chain of type-I collagen result in defective chain association and produce lethal osteogenesis imperfecta. J. Biol. Chem. 268, 18218–18225 (1993).

    CAS  PubMed  Google Scholar 

  32. De Paepe, A., Nuytinck, L., Hausser, I., Anton-Lamprecht, I. & Naeyaert, J.M. Mutations in the COL5A1 gene are causal in the Ehlers-Danlos syndromes I and II. Am. J. Hum. Genet. 60, 547–554 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Myllyharju, J. & Kivirikko, K.I. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 20, 33–43 (2004).

    Article  CAS  Google Scholar 

  34. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  35. Gouet, P., Courcelle, E., Stuart, D.I. & Metoz, F. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305–308 (1999).

    Article  CAS  Google Scholar 

  36. Bourhis, J.M. et al. Production and crystallization of the C-propeptide trimer from human procollagen III. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. (in the press).

  37. Aricescu, A.R., Lu, W. & Jones, E.Y. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr. D Biol. Crystallogr. 62, 1243–1250 (2006).

    Article  Google Scholar 

  38. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  39. Terwilliger, T.C. et al. Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr. D Biol. Crystallogr. 65, 582–601 (2009).

    Article  CAS  Google Scholar 

  40. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997).

    Article  CAS  Google Scholar 

  41. Vagin, A.A. et al. REFMAC5 dictionary: organisation of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D Biol. Crystallogr. 60, 2185–2195 (2004).

    Article  Google Scholar 

  42. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  43. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Delolme, D. Eichenberger, K. El Omari, P. Gouet, R. Haser, R. Liddington, G. Parsiegla, X. Robert, G. Stranzl, S. Vadon-Le Goff, M. van Rest and T. Walter for their help and suggestions at different stages of the project. We also thank A. Chaboud and I. Grosjean of the Protein Production and Analysis facility (Unité Mixte de Service Biosciences Gerland-Lyon Sud 3444) as well as staff of Diamond Light Source for technical support. This work was funded by the Fondation de France (11878 to D.J.S.H.), the Agence National de la Recherche (ANR 07 PHYSIO 022 01 to D.J.S.H.; ANR 2010 BLAN 1526 01 to C.M. and N.A.), the European Commission (227764 to E.Y.J.), the Medical Research Council UK (G09 000 84 to E.Y.J.), Cancer Research UK (A5261 to E.Y.J.) and the Centre National de la Recherche Scientifique, Université Lyon 1 and Lyonbiopôle.

Author information

Authors and Affiliations

Authors

Contributions

J.-M.B., N.M., Y.Z., K.H. and D.J.S.H. designed and performed the research; J.M.B., J.-Y.E., E.Y.J., C.M., N.A. and D.J.S.H. analyzed the data; and D.J.S.H. wrote the paper.

Corresponding author

Correspondence to David J S Hulmes.

Ethics declarations

Competing interests

This work forms part of a US patent application by J.M.B., N.M., C.M., N.A. and D.J.S.H.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Table 1 (PDF 1130 kb)

Supplementary Movie 1

Positions of known missense mutations in the C-propeptides of fibrillar procollagens I, II, III and V mapped on to the structure of the proa1(III) C-propeptide (MPG 6429 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourhis, JM., Mariano, N., Zhao, Y. et al. Structural basis of fibrillar collagen trimerization and related genetic disorders. Nat Struct Mol Biol 19, 1031–1036 (2012). https://doi.org/10.1038/nsmb.2389

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2389

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing