Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Membrane-dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and intersubunit β-strand alignment

Abstract

Cholesterol-dependent cytolysins are bacterial protein toxins that bind to cholesterol-containing membranes, form oligomeric complexes and insert into the bilayer to create large aqueous pores. Membrane-dependent structural rearrangements required to initiate the oligomerization of perfringolysin O monomers have been identified, as have the monomer-monomer interaction surfaces, using site-specific mutagenesis, disulfide trapping and multiple fluorescence techniques. Upon binding to the membrane, a structural element in perfringolysin O moves to expose the edge of a previously hidden β-strand that forms the monomer-monomer interface and is required for oligomer assembly. The β-strands that form the interface each contain a single aromatic residue, and these aromatics appear to stack, thereby aligning the transmembrane β-hairpins of adjacent monomers in the proper register for insertion. Collectively, these data reveal a novel membrane binding–dependent mechanism for regulating cytolysin monomer-monomer association and pore formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PFO structure, structural elements and mutations.
Figure 2: Effect of β4-β5 disulfide-locking on pore formation.
Figure 3: D4-membrane interaction triggers a conformational rearrangement around β4 in D3.
Figure 4: Mutation of glycines at the end of β4 blocks oligomerization.
Figure 5: Excimer formation detected by pyrenes attached to β1 and β4 of neighboring monomers.
Figure 7: Proper relative positioning of aromatic residues in β1 and β4 is critical for pore formation.
Figure 6: Aromatic residue involvement in PFO function.
Figure 8: Mechanism of oligomerization and intermolecular β-sheet formation in PFO.

Similar content being viewed by others

References

  1. Alouf, J.E. Introduction to the family of the structurally related cholesterol-binding cytolysins ('sulfhydryl-activated' toxins). In The Comprehensive Sourcebook of Bacterial Protein Toxins (eds. Alouf, J.E. & Freer, J.H.) 443–456 (Academic, London, 1999).

    Google Scholar 

  2. Tweten, R.K., Parker, M.W. & Johnson, A.E. The cholesterol-dependent cytolysins. Curr. Top. Microbiol. Immunol. 257, 15–33 (2001).

    CAS  PubMed  Google Scholar 

  3. Olofsson, A., Hebert, H. & Thelestam, M. The projection structure of perfringolysin O (Clostridium perfringens Θ-toxin). FEBS Lett. 319, 125–127 (1993).

    Article  CAS  Google Scholar 

  4. Rossjohn, J., Feil, S.C., Mckinstry, W.J., Tweten, R.K. & Parker, M.W. Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 89, 685–692 (1997).

    Article  CAS  Google Scholar 

  5. Heuck, A.P., Tweten, R.K. & Johnson, A.E. β-barrel pore forming toxins: intriguing dimorphic proteins. Biochemistry 40, 9065–9073 (2001).

    Article  CAS  Google Scholar 

  6. Heuck, A.P. & Johnson, A.E. Pore-forming protein structure analysis in membranes using MIFT, multiple independent fluorescence techniques. Cell Biochem. Biophys. 36, 89–102 (2002).

    Article  CAS  Google Scholar 

  7. Shepard, L.A. et al. Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an α-helical to β-sheet transition identified by fluorescence spectroscopy. Biochemistry 37, 14563–14574 (1998).

    Article  CAS  Google Scholar 

  8. Shatursky, O. et al. The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins. Cell 99, 293–299 (1999).

    Article  CAS  Google Scholar 

  9. Heuck, A.P., Hotze, E.M., Tweten, R.K. & Johnson, A.E. Mechanism of membrane insertion of a multimeric β-barrel protein: Perfringolysin O creates a pore using ordered and coupled conformational changes. Mol. Cell 6, 1233–1242 (2000).

    Article  CAS  Google Scholar 

  10. Ramachandran, R., Heuck, A.P., Tweten, R.K. & Johnson, A.E. Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin. Nat. Struct. Biol. 9, 823–827 (2002).

    CAS  PubMed  Google Scholar 

  11. Shepard, L.A., Shatursky, O., Johnson, A.E. & Tweten, R.K. The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane β-hairpins. Biochemistry 39, 10284–10293 (2000).

    Article  CAS  Google Scholar 

  12. Hotze, E.M. et al. Arresting pore formation of a cholesterol-dependent cytolysin by disulfide trapping synchronizes the insertion of the transmembrane β-sheet from a prepore intermediate. J. Biol. Chem. 276, 8261–8268 (2001).

    Article  CAS  Google Scholar 

  13. Hotze, E.M. et al. Monomer-monomer interactions drive the prepore to pore conversion of a β -barrel-forming cholesterol-dependent cytolysin. J. Biol. Chem. 277, 11597–11605 (2002).

    Article  CAS  Google Scholar 

  14. Heuck, A.P., Tweten, R.K. & Johnson, A.E. Assembly and topography of the prepore complex in cholesterol-dependent cytolysins. J. Biol. Chem. 278, 31218–31225 (2003).

    Article  CAS  Google Scholar 

  15. Crowley, K.S., Reinhart, G.D. & Johnson, A.E. The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell 73, 1101–1115 (1993).

    Article  CAS  Google Scholar 

  16. Lehrer, S.S. Intramolecular pyrene excimer fluorescence: a probe of proximity and protein conformational change. Methods Enzymol. 278, 286–295 (1997).

    Article  CAS  Google Scholar 

  17. Gazit, E. A possible role for π-stacking in the self-assembly of amyloid fibrils. FASEB J. 16, 77–83 (2002).

    Article  CAS  Google Scholar 

  18. Richardson, J.S. & Richardson, D.C. Natural β-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc. Natl. Acad. Sci. USA 99, 2754–2759 (2002).

    Article  CAS  Google Scholar 

  19. Kraulis, P.J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  20. Merritt, E.A. & Bacon, D.J. Raster3D photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grant AI 37657 and the Robert A. Welch Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur E Johnson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramachandran, R., Tweten, R. & Johnson, A. Membrane-dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and intersubunit β-strand alignment. Nat Struct Mol Biol 11, 697–705 (2004). https://doi.org/10.1038/nsmb793

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb793

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing