Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chronic myeloproliferative neoplasms

Homomultimerization of mutant calreticulin is a prerequisite for MPL binding and activation

Abstract

Studies have previously shown that mutant calreticulin (CALR), found in a subset of patients with myeloproliferative neoplasms (MPNs), interacts with and subsequently promotes the activation of the thrombopoietin receptor (MPL). However, the molecular mechanism behind the activity of mutant CALR remains unknown. Here we show that mutant, but not wild-type, CALR interacts to form a homomultimeric complex. This intermolecular interaction among mutant CALR proteins depends on their carboxyl-terminal domain, which is generated by a unique frameshift mutation found in patients with MPN. With a competition assay, we demonstrated that the formation of mutant CALR homomultimers is required for the binding and activation of MPL. Since association with MPL is required for the oncogenicity of mutant CALR, we propose a model in which the constitutive activation of the MPL downstream pathway by mutant CALR multimers induces the development of MPN. This study provides a potential novel therapeutic strategy against mutant CALR-dependent tumorigenesis via targeting the intermolecular interaction among mutant CALR proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369:2391–405.

    Article  CAS  Google Scholar 

  2. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379–90.

    Article  CAS  Google Scholar 

  3. Araki M, Yang Y, Masubuchi N, Hironaka Y, Takei H, Morishita S, et al. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood. 2016;127:1307–16.

    Article  CAS  Google Scholar 

  4. Elf S, Abdelfattah NS, Chen E, Perales-Paton J, Rosen EA, Ko A, et al. Mutant calreticulin requires both its mutant C-terminus and the thrombopoietin receptor for oncogenic transformation. Cancer Discov. 2016;6:368–81.

    Article  CAS  Google Scholar 

  5. Marty C, Pecquet C, Nivarthi H, El-Khoury M, Chachoua I, Tulliez M, et al. Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis. Blood. 2016;127:1317–24.

    Article  CAS  Google Scholar 

  6. Chachoua I, Pecquet C, El-Khoury M, Nivarthi H, Albu RI, Marty C, et al. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood. 2016;127:1325–35.

    Article  CAS  Google Scholar 

  7. Cazzola M. Mutant calreticulin: when a chaperone becomes intrusive. Blood. 2016;127:1219–21.

    Article  CAS  Google Scholar 

  8. Imai M, Araki M, Komatsu N, Somatic mutations of calreticulin in myeloproliferative neoplasms.Int J Hematol. 2017;105:743–7.

    Article  CAS  Google Scholar 

  9. Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129:667–79.

    Article  CAS  Google Scholar 

  10. Varghese LN, Defour JP, Pecquet C, Constantinescu SN. The thrombopoietin receptor: structural basis of traffic and activation by ligand, mutations, agonists, and mutated calreticulin. Front Endocrinol. 2017;8:59.

    Article  Google Scholar 

  11. Alexander WS, Metcalf D, Dunn AR. Point mutations within a dimer interface homology domain of c-Mpl induce constitutive receptor activity and tumorigenicity. EMBO J. 1995;14:5569–78.

    Article  CAS  Google Scholar 

  12. Staerk J, Defour JP, Pecquet C, Leroy E, Antoine-Poirel H, Brett I, et al. Orientation-specific signalling by thrombopoietin receptor dimers. EMBO J. 2011;30:4398–413.

    Article  CAS  Google Scholar 

  13. Brooks AJ, Dai W, O’Mara ML, Abankwa D, Chhabra Y, Pelekanos RA, et al. Mechanism of activation of protein kinase JAK2 by the growth hormone receptor. Science. 2014;344:1249783.

    Article  Google Scholar 

  14. Syed RS, Reid SW, Li C, Cheetham JC, Aoki KH, Liu B, et al. Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature. 1998;395:511–6.

    Article  CAS  Google Scholar 

  15. Yoshida H, Kondo M, Ichihashi T, Hashimoto N, Inazawa J, Ohno R, et al. A novel myeloid cell line, Marimo, derived from therapy-related acute myeloid leukemia during treatment of essential thrombocythemia: consistent chromosomal abnormalities and temporary C-MYC gene amplification. Cancer Genet Cytogenet. 1998;100:21–4.

    Article  CAS  Google Scholar 

  16. Kollmann K, Nangalia J, Warsch W, Quentmeier H, Bench A, Boyd E, et al. MARIMO cells harbor a CALR mutation but are not dependent on JAK2/STAT5 signaling. Leukemia. 2015;29:494–7.

    Article  CAS  Google Scholar 

  17. Shide K, Kameda T, Yamaji T, Sekine M, Inada N, Kamiunten A, et al. Calreticulin mutant mice develop essential thrombocythemia that is ameliorated by the JAK inhibitor ruxolitinib. Leukemia. 2017;31:1136–44.

    Article  CAS  Google Scholar 

  18. Elf S, Abdelfattah NS, Baral AJ, Beeson D, Rivera JF, Ko A, et al. Defining the requirements for the pathogenic interaction between mutant calreticulin and MPL in MPN. Blood. 2018;131:782–6.

    Article  CAS  Google Scholar 

  19. Han L, Schubert C, Kohler J, Schemionek M, Isfort S, Brummendorf TH, et al. Calreticulin-mutant proteins induce megakaryocytic signaling to transform hematopoietic cells and undergo accelerated degradation and Golgi-mediated secretion. J Hematol Oncol. 2016;9:45.

    Article  Google Scholar 

  20. Araki M, Komatsu N. Novel molecular mechanism of cellular transformation by a mutant molecular chaperone in myeloproliferative neoplasms. Cancer Sci. 2017;108:1907–12.

    Article  CAS  Google Scholar 

  21. Wang X, Haylock D, Hu CS, Kowalczyk W, Jiang T, Qiu J, et al. A thrombopoietin receptor antagonist is capable of depleting myelofibrosis hematopoietic stem and progenitor cells. Blood. 2016;127:3398–409.

    Article  CAS  Google Scholar 

  22. Hou W, Zhang Q, Yan Z, Chen R, Zeh Iii HJ, Kang R, et al. Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis. 2013;4:e966.

    Article  CAS  Google Scholar 

  23. Zamanian M, Veerakumarasivam A, Abdullah S, Rosli R. Calreticulin and cancer. Pathol Oncol Res. 2013;19:149–54.

    Article  CAS  Google Scholar 

  24. Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J. 2009;417:651–66.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded in part by the Ministry of Education, Culture, Sports, Science and Technology (MEXT)-Supported Program for the Strategic Research Foundation at Private Universities; MEXT’s Promotion Plan for the Platform of Human Resource Development for Cancer project; Japan Society for the Promotion of Science’s KAKENHI Grants #15K15368, #16K09859, #17K16195, #17H04211, #18K16098, #18K16127, #18K16126, and #18K08372; and grants from the Takeda Science Foundation, SENSHIN Medical Research Foundation, and Japan Leukemia Research Fund. The funders had no role in manuscript preparation. We are grateful to Dr Hitoshi Kiyoi for providing Marimo cell line, to Shing Leng Chan for her critical reading of the manuscript, and to members of the Department of Hematology for supporting this study. We would like to acknowledge the Laboratory of Molecular and Biochemical Research, Laboratory of Morphological Analysis and Imaging, and the Division of Cell Biology at the Research Support Center of Juntendo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Komatsu.

Ethics declarations

Conflict of interest

MA, YY and NK have submitted a patent application related to this study. The remaining authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araki, M., Yang, Y., Imai, M. et al. Homomultimerization of mutant calreticulin is a prerequisite for MPL binding and activation. Leukemia 33, 122–131 (2019). https://doi.org/10.1038/s41375-018-0181-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0181-2

This article is cited by

Search

Quick links