Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acute myeloid leukemia

Enhanced expression of the sphingosine-1-phosphate-receptor-3 causes acute myelogenous leukemia in mice

Abstract

Acute myeloid leukemia (AML) carries a 10–100 fold lower mutational burden than other neoplastic entities. Mechanistic explanations for why a low number of mutations suffice to induce leukemogenesis are therefore required. Here we demonstrate that transgenic overexpression of the wild type sphingosine-1-phosphate receptor 3 (S1P3) in murine hematopoietic stem cells is sufficient to induce a transplantable myeloid leukemia. In contrast, S1P3 expression in more mature compartments does not cause malignant transformation. Treatment with the sphingosine phosphate receptor modulator Fingolimod, which prevents receptor signaling, normalized peripheral blood cell counts and reduced spleen sizes in S1P3 expressing mice. Gene expression analyses in AML patients revealed elevated S1P3 expression specifically in two molecular subclasses. Our data suggest a previously unrecognized contribution of wild type S1P3 signaling to leukemogenesis that warrants the exploration of S1P3 antagonists in preclinical AML models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Proia RL, Hla T. Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J Clin Invest. 2015;125:1379–87.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Melendez AJ, Carlos-Dias E, Gosink M, Allen JM, Takacs L. Human sphingosine kinase: molecular cloning, functional characterization and tissue distribution. Gene. 2000;251:19–26.

    Article  CAS  PubMed  Google Scholar 

  3. Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S, et al. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature. 1996;381:800–3.

    Article  CAS  PubMed  Google Scholar 

  4. Liu H, Sugiura M, Nava VE, Edsall LC, Kono K, Poulton S, et al. Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. J Biol Chem. 2000;275:19513–20.

    Article  CAS  PubMed  Google Scholar 

  5. Tan SF, Liu X, Fox TE, Barth BM, Sharma A, Turner SD, et al. Acid ceramidase is upregulated in AML and represents a novel therapeutic target. Oncotarget. 2016;7:83208–22.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Obeid LM, Linardic CM, Karolak LA, Hannun YA. Programmed cell death induced by ceramide. Science. 1993;259:1769–71.

    Article  CAS  PubMed  Google Scholar 

  7. Evangelisti C, Evangelisti C, Buontempo F, Lonetti A, Orsini E, Chiarini F, et al. Therapeutic potential of targeting sphingosine kinases and sphingosine 1-phosphate in hematological malignancies. Leukemia. 2016;30:2142–51.

    Article  CAS  PubMed  Google Scholar 

  8. Pappu R, Schwab SR, Cornelissen I, Pereira JP, Regard JB, Xu Y, et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science. 2007;316:295–8.

    Article  CAS  PubMed  Google Scholar 

  9. Juarez JG, Harun N, Thien M, Welschinger R, Baraz R, Pena AD, et al. Sphingosine-1-phosphate facilitates trafficking of hematopoietic stem cells and their mobilization by CXCR4 antagonists in mice. Blood. 2012;119:707–16.

    Article  CAS  PubMed  Google Scholar 

  10. Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature. 2004;427:355–60.

    Article  CAS  PubMed  Google Scholar 

  11. Venkataraman K, Thangada S, Michaud J, Oo ML, Ai Y, Lee YM, et al. Extracellular export of sphingosine kinase-1a contributes to the vascular S1P gradient. Biochem J. 2006;397:461–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kappos L, Antel J, Comi G, Montalban X, O'Connor P, Polman CH, et al. Oral fingolimod (FTY720) for relapsing multiple sclerosis. N Engl J Med. 2006;355:1124–40.

    Article  CAS  PubMed  Google Scholar 

  13. Mandala S, Hajdu R, Bergstrom J, Quackenbush E, Xie J, Milligan J, et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science. 2002;296:346–9.

    Article  CAS  PubMed  Google Scholar 

  14. Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 2000;404:193–7.

    Article  CAS  PubMed  Google Scholar 

  15. Christensen JL, Weissman IL. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci USA. 2001;98:14541–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Passegue E, Jamieson CH, Ailles LE, Weissman IL. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA. 2003;100 Suppl 1 :11842–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaufmann KB, Grunder A, Hadlich T, Wehrle J, Gothwal M, Bogeska R, et al. A novel murine model of myeloproliferative disorders generated by overexpression of the transcription factor NF-E2. J Exp Med. 2012;209:35–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jutzi JS, Bogeska R, Nikoloski G, Schmid CA, Seeger TS, Stegelmann F, et al. MPN patients harbor recurrent truncating mutations in transcription factor NF-E2. J Exp Med. 2013;210:1003–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kogan SC, Ward JM, Anver MR, Berman JJ, Brayton C, Cardiff RD, et al. Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice. Blood. 2002;100:238–45.

    Article  CAS  PubMed  Google Scholar 

  21. Schaller E, Macfarlane AJ, Rupec RA, Gordon S, McKnight AJ, Pfeffer K. Inactivation of the F4/80 glycoprotein in the mouse germ line. Mol Cell Biol. 2002;22:8035–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Faust N, Varas F, Kelly LM, Heck S, Graf T. Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood. 2000;96:719–26.

    Article  CAS  PubMed  Google Scholar 

  23. Gabay M, Li Y, Felsher DW. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect Med. 2014;4:a014241.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Georgantas RW 3rd, Tanadve V, Malehorn M, Heimfeld S, Chen C, Carr L, et al. Microarray and serial analysis of gene expression analyses identify known and novel transcripts overexpressed in hematopoietic stem cells. Cancer Res. 2004;64:4434–41.

    Article  CAS  PubMed  Google Scholar 

  25. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P, et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med. 2011;17:1086–93.

    Article  CAS  PubMed  Google Scholar 

  26. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR. A stem cell molecular signature. Sci (New Y, NY. 2002;298:601–4.

    Article  CAS  Google Scholar 

  27. Verhaak RG, Goudswaard CS, van Putten W, Bijl MA, Sanders MA, Hugens W, et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood. 2005;106:3747–54.

    Article  CAS  PubMed  Google Scholar 

  28. Downing JR. The core-binding factor leukemias: lessons learned from murine models. Curr Opin Genet Dev. 2003;13:48–54.

    Article  CAS  PubMed  Google Scholar 

  29. Sportoletti P, Varasano E, Rossi R, Mupo A, Tiacci E, Vassiliou G, et al. Mouse models of NPM1-mutated acute myeloid leukemia: biological and clinical implications. Leukemia. 2015;29:269–78.

    Article  CAS  PubMed  Google Scholar 

  30. Cole CB, Russler-Germain DA, Ketkar S, Verdoni AM, Smith AM, Bangert CV, et al. Haploinsufficiency for DNA methyltransferase 3A predisposes hematopoietic cells to myeloid malignancies. J Clin Invest. 2017;127:3657–74.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kappos L, O'Connor P, Radue EW, Polman C, Hohlfeld R, Selmaj K, et al. Long-term effects of fingolimod in multiple sclerosis: the randomized FREEDOMS extension trial. Neurology. 2015;84:1582–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Powell JA, Lewis AC, Zhu W, Toubia J, Pitman MR, Wallington-Beddoe CT, et al. Targeting sphingosine kinase 1 induces MCL1-dependent cell death in acute myeloid leukemia. Blood. 2017;129:771–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dick TE, Hengst JA, Fox TE, Colledge AL, Kale VP, Sung SS, et al. The apoptotic mechanism of action of the sphingosine kinase 1 selective inhibitor SKI-178 in human acute myeloid leukemia cell lines. J Pharm Exp Ther. 2015;352:494–508.

    Article  CAS  Google Scholar 

  34. Watek M, Durnas B, Wollny T, Pasiarski M, Gozdz S, Marzec M, et al. Unexpected profile of sphingolipid contents in blood and bone marrow plasma collected from patients diagnosed with acute myeloid leukemia. Lipids Health Dis. 2017;16:235.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Pham DH, Powell JA, Gliddon BL, Moretti PA, Tsykin A, Van der Hoek M, et al. Enhanced expression of transferrin receptor 1 contributes to oncogenic signalling by sphingosine kinase 1. Oncogene. 2014;33:5559–68.

    Article  CAS  PubMed  Google Scholar 

  36. Li L, Piloto O, Nguyen HB, Greenberg K, Takamiya K, Racke F, et al. Knock-in of an internal tandem duplication mutation into murine FLT3 confers myeloproliferative disease in a mouse model. Blood. 2008;111:3849–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kelly LM. FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood. 2002;99:310–8.

    Article  CAS  PubMed  Google Scholar 

  38. Kitayama H, Tsujimura T, Matsumura I, Oritani K, Ikeda H, Ishikawa J, et al. Neoplastic transformation of normal hematopoietic cells by constitutively activating mutations of c-kit receptor tyrosine kinase. Blood. 1996;88:995–1004.

    Article  CAS  PubMed  Google Scholar 

  39. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499:214–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jo E, Bhhatarai B, Repetto E, Guerrero M, Riley S, Brown SJ, et al. Novel selective allosteric and bitopic ligands for the S1P(3) receptor. ACS Chem Biol. 2012;7:1975–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sanna MG, Vincent KP, Repetto E, Nguyen N, Brown SJ, Abgaryan L, et al. Bitopic sphingosine 1-phosphate receptor 3 (S1P3) antagonist rescue from complete heart block: pharmacological and genetic evidence for direct S1P3 regulation of mouse cardiac conduction. Mol Pharm. 2016;89:176–86.

    Article  CAS  Google Scholar 

  42. Yung BS, Brand CS, Xiang SY, Gray CB, Means CK, Rosen H, et al. Selective coupling of the S1P3 receptor subtype to S1P-mediated RhoA activation and cardioprotection. J Mol Cell Cardiol. 2017;103:1–10.

    Article  CAS  PubMed  Google Scholar 

  43. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. New Engl J Med. 2004;350:1617–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge expert technical support by Martina de Groot as well as by the animal care facility, especially Natalie Krause. This work was supported by grants from the National Cancer Institute (1 PO1 CA108671 to H.L.P), the Deutsche Forschungsgemeinschaft (Pa 611/9–1 to H.L.P. and Ju 3104/1–1 to J.S.J. within the research consortium FOR 2674, MU1328/14–1 and MU1328/15–1 to C.M.T. and NO 406/3-1 to J.-R.N.), the Deutsche Krebshilfe (70112974 and 110500 to C.M.T.), the José-Carreras-Stiftung (DJCLS R13/04 and DJCLS 22R/2017 to C.M.T.), the Italian Ministry of Education, Universities and Research (IDEAS RBID08777T to J.-R.N. and M.S.) and the Italian Ministry of Health (GR-2011-02346974 to F.P.) S.V. was funded by the MOTI-VATE scholarship program supported by the Else-Kroener-Fresenius-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike L. Pahl.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorbach, S., Gründer, A., Zhou, F. et al. Enhanced expression of the sphingosine-1-phosphate-receptor-3 causes acute myelogenous leukemia in mice. Leukemia 34, 721–734 (2020). https://doi.org/10.1038/s41375-019-0577-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0577-7

This article is cited by

Search

Quick links