Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intratumoral IFN-α gene delivery reduces tumor-infiltrating regulatory T cells through the downregulation of tumor CCL17 expression

Abstract

The effect of IFN-α on the immunosuppressive tumor microenvironment is not fully understood. We previously reported that intratumoral IFN-α gene transduction decreased the frequency of regulatory T cells (Tregs) in the tumor by inducing the secretion of IL-6 from dendritic cells. In this study, we examined whether IFN-α affects the trafficking of Tregs to the tumor. Since CT26 cells expressed CCL17 among Treg-attracting chemokines, we focused on its role in IFN-α-mediated Treg suppression. IFN-α directly suppressed CCL17 production from CT26 cells in vitro, and IFN-α transduction reduced CCL17 expression in tumors in vivo. Next, to investigate whether CCL17 downregulation is related to the suppression of Treg trafficking, CCL17-downregulated CT26 cells produced using short hairpin RNA (CT26-shCCL17) were inoculated into mice. The frequency of Tregs in CT26-shCCL17 tumors was reduced and tumor growth was suppressed. Finally, to examine the combinatorial effect of IFN-α expression with CCL17 downregulation, IFN-α was transduced into CT26-shCCL17 tumors. This resulted in an elevation of CT26-specific CD8+ T cells and the complete eradication of tumors. This study shows a novel mechanism of IFN-α-mediated Treg suppression, and combining IFN-α gene therapy with strong CCL17 downregulation could offer a promising strategy for the treatment of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pfeffer LM, Dinarello CA, Herberman RB, Williams BR, Borden EC, Walter MR, et al. Biological properties of recombinant alpha-interferons: 40th anniversary of the discovery of interferons. Cancer Res. 1998;58:2489–99.

    CAS  PubMed  Google Scholar 

  2. Ferrantini M, Capone I, Belardelli F. Interferon-alpha and cancer: mechanisms of action and new perspectives of clinical use. Biochimie. 2007;89:884–93.

    Article  CAS  Google Scholar 

  3. Talpaz M, Hehlmann R, Quintas-Cardama A, Mercer J, Cortes J. Re-emergence of interferon-alpha in the treatment of chronic myeloid leukemia. Leukemia. 2013;27:803–12.

    Article  CAS  Google Scholar 

  4. Tarhini AA, Gogas H, Kirkwood JM. IFN-alpha in the treatment of melanoma. J Immunol. 2012;189:3789–93.

    Article  CAS  Google Scholar 

  5. Rosenblatt J, McDermott DF. Immunotherapy for renal cell carcinoma. Hematol Oncol Clin North Am. 2011;25:793–812.

    Article  Google Scholar 

  6. Escobar G, Moi D, Ranghetti A, Ozkal-Baydin P, Squadrito ML, Kajaste-Rudnitski A, Bondanza A, et al. Genetic engineering of hematopoiesis for targeted IFN-alpha delivery inhibits breast cancer progression. Sci Transl Med. 2014;6:217ra3.

    Article  Google Scholar 

  7. Hatanaka K, Suzuki K, Miura Y, Yoshida K, Ohnami S, Kitade T, et al. Interferon-alpha and antisense K-ras RNA combination gene therapy against pancreatic cancer. J Gene Med. 2004;6:1139–48.

    Article  CAS  Google Scholar 

  8. Ohashi M, Yoshida K, Kushida M, Miura Y, Ohnami S, Ikarashi Y, et al. Adenovirus-mediated interferon alpha gene transfer induces regional direct cytotoxicity and possible systemic immunity against pancreatic cancer. Br J Cancer. 2005;93:441–9.

    Article  CAS  Google Scholar 

  9. Narumi K, Kondoh A, Udagawa T, Hara H, Goto N, Ikarashi Y, et al. Administration route-dependent induction of antitumor immunity by interferon-alpha gene transfer. Cancer Sci. 2010;101:1686–94.

    Article  CAS  Google Scholar 

  10. Narumi K, Udagawa T, Kondoh A, Kobayashi A, Hara H, Ikarashi Y, et al. In vivo delivery of interferon-alpha gene enhances tumor immunity and suppresses immunotolerance in reconstituted lymphopenic hosts. Gene Ther. 2012;19:34–48.

    Article  CAS  Google Scholar 

  11. Hara H, Kobayashi A, Narumi K, Kondoh A, Yoshida K, Nishimoto T, et al. Intratumoral interferon-alpha gene transfer enhances tumor immunity after allogeneic hematopoietic stem cell transplantation. Cancer Immunol Immunother. 2009;58:1007–21.

    Article  CAS  Google Scholar 

  12. Hara H, Kobayashi A, Yoshida K, Ohashi M, Ohnami S, Uchida E, et al. Local interferon-alpha gene therapy elicits systemic immunity in a syngeneic pancreatic cancer model in hamster. Cancer Sci. 2007;98:455–63.

    Article  CAS  Google Scholar 

  13. Aida K, Miyakawa R, Suzuki K, Narumi K, Udagawa T, Yamamoto Y, et al. Suppression of Tregs by anti-glucocorticoid induced TNF receptor antibody enhances the antitumor immunity of interferon-alpha gene therapy for pancreatic cancer. Cancer Sci. 2014;105:159–67.

    Article  CAS  Google Scholar 

  14. Hashimoto H, Ueda R, Narumi K, Heike Y, Yoshida T, Aoki K. Type I IFN gene delivery suppresses regulatory T cells within tumors. Cancer Gene Ther. 2014;21:532–41.

    Article  CAS  Google Scholar 

  15. Sather BD, Treuting P, Perdue N, Miazqowicz M, Fontenot JD, Rudensky AY, et al. Altering the distribution of Foxp3( + ) regulatory T cells results in tissue-specific inflammatory disease. J Exp Med. 2007;204:1335–47.

    Article  CAS  Google Scholar 

  16. Dudda JC, Perdue N, Bachtanian E, Campbell DJ. Foxp3 + regulatory T cells maintain immune homeostasis in the skin. J Exp Med. 2008;205:1559–65.

    Article  CAS  Google Scholar 

  17. Fu H, Kishore M, Gittens B, Wang G, Coe D, Komarowska I, et al. Self-recognition of the endothelium enables regulatory T-cell trafficking and defines the kinetics of immune regulation. Nat Commun. 2014;5:3436.

    Article  Google Scholar 

  18. Anz D, Rapp M, Eiber S, Koelzer VH, Thaler R, Haubner S, et al. Suppression of intratumoral CCL22 by type i interferon inhibits migration of regulatory T cells and blocks cancer progression. Cancer Res. 2015;75:4483–93.

    Article  CAS  Google Scholar 

  19. Aoki K, Barker C, Danthinne X, Imperiale MJ, Nabel GJ. Efficient generation of recombinant adenoviral vectors by Cre-lox recombination in vitro. Mol Med. 1999;5:224–31.

    Article  CAS  Google Scholar 

  20. Nakano M, Aoki K, Matsumoto N, Ohnami S, Hatanaka K, Hibi T, et al. Suppression of colorectal cancer growth using an adenovirus vector expressing an antisense K-ras RNA. Mol Ther. 2001;3:491–9.

    Article  CAS  Google Scholar 

  21. Ishida T, Ueda R. CCR4 as a novel molecular target for immunotherapy of cancer. Cancer Sci. 2006;97:1139–46.

    Article  CAS  Google Scholar 

  22. Mizukami Y, Kono K, Kawaguchi Y, Akaike H, Kamimura K, Sugai H, et al. CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3 + regulatory T cells in gastric cancer. Int J Cancer. 2008;122:2286–93.

    Article  CAS  Google Scholar 

  23. Tan MC, Goedegebuure PS, Belt BA, Flaherty B, Sankpal N, Gillanders WE, et al. Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J Immunol. 2009;182:1746–55.

    Article  CAS  Google Scholar 

  24. Porta C, Rimoldi M, Raes G, Brys L, Ghezzi P, Di Liberto D, et al. Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB. Proc Natl Acad Sci USA. 2009;106:14978–83.

    Article  CAS  Google Scholar 

  25. Katakura T, Miyazaki M, Kobayashi M, Herndon DN, Suzuki F. CCL17 and IL-10 as effectors that enable alternatively activated macrophages to inhibit the generation of classically activated macrophages. J Immunol. 2004;172:1407–13.

    Article  CAS  Google Scholar 

  26. Bacher N, Raker V, Hofmann C, Graulich E, Schwenk M, Baumgrass R, et al. Interferon-alpha suppresses cAMP to disarm human regulatory T cells. Cancer Res. 2013;73:5647–56.

    Article  CAS  Google Scholar 

  27. Pace L, Vitale S, Dettori B, Palombi C, La Sorsa V, Belardelli F, et al. APC activation by IFN-alpha decreases regulatory T cell and enhances Th cell functions. J Immunol. 2010;184:5969–79.

    Article  CAS  Google Scholar 

  28. Wirnsberger G, Hebenstreit D, Posselt G, Horejs-Hoeck J, Duschl A. IL-4 induces expression of TARC/CCL17 via two STAT6 binding sites. Eur J Immunol. 2006;36:1882–91.

    Article  CAS  Google Scholar 

  29. Maier E, Wirnsberger G, Horejs-Hoeck J, Duschl A, Hebenstreit D. Identification of a distal tandem STAT6 element within the CCL17 locus. Hum Immunol. 2007;68:986–92.

    Article  CAS  Google Scholar 

  30. Fulkerson PC, Zimmermann N, Hassman LM, Finkelman FD, Rothenberg ME. Pulmonary chemokine expression is coordinately regulated by STAT1, STAT6, and IFN-gamma. J Immunol. 2004;173:7565–74.

    Article  CAS  Google Scholar 

  31. Gupta S, Jiang M, Pernis AB. IFN-alpha activates Stat6 and leads to the formation of Stat2:Stat6 complexes in B cells. J Immunol. 1999;163:3834–41.

    CAS  PubMed  Google Scholar 

  32. Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A, Sanmamed MF, Le Bon A, Melero I. Direct effects of type I interferons on cells of the immune system. Clin Cancer Res. 2011;17:2619–27.

    Article  CAS  Google Scholar 

  33. Komine M, Kakinuma T, Kagami S, Hanakawa Y, Hashimoto K, Tamaki K. Mechanism of thymus- and activation-regulated chemokine (TARC)/CCL17 production and its modulation by roxithromycin. J Invest Dermatol. 2005;125:491–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants-in-aid for Practical Research for Innovative Cancer Control from the Japan Agency for Medical Research and Development (18ck0106358h0002 and 18ak0101043h0104) and grants from the National Cancer Center Research and Development Fund (26-A-11, 26-A-12, 29-A-2, and 29-A-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Aoki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirata, A., Hashimoto, H., Shibasaki, C. et al. Intratumoral IFN-α gene delivery reduces tumor-infiltrating regulatory T cells through the downregulation of tumor CCL17 expression. Cancer Gene Ther 26, 334–343 (2019). https://doi.org/10.1038/s41417-018-0059-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-018-0059-5

This article is cited by

Search

Quick links