Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Opinion: Hijacking exogenous signals to generate new secondary metabolites during symbiotic interactions

Abstract

The biosynthesis of secondary metabolites by ‘group effort’ — in which two or more species cooperate to generate a hybrid small molecule — has been vastly underappreciated. In the laboratory, biosynthetic studies typically focus on a single species that is responsible for the expression of the necessary enzymes and assembly of the small-molecule product. However, in natural environments, microorganisms live in tight associations and are surrounded by a dynamic and intricate exchange of small molecules. The biosynthetic paradigm that is emerging for these conditions is one in which exogenous signals can act as inducers of silent pathways or as alternative substrates that give rise to hybrid small molecules. Examples of such secondary metabolites of dual origin are highlighted in this Perspective article. Aside from demonstrating the remarkable metabolic economy that microorganisms use to create complex molecules, these examples also highlight the benefits of studying biosynthesis using a multispecies approach. This integrative mindset reveals not only the chemistry that underlies symbiotic biosynthetic pathways but also the naturally evolved functions of secondary metabolites that mediate or modulate interspecies interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biosynthetic modalities as demonstrated with the acyl homoserine lactones.
Figure 2: Algal–bacterial symbioses that are modulated by the hybrid roseobacticides.
Figure 3: Multipartite plant–insect symbioses.
Figure 4: Proposed hybrid biosynthesis in tunicate–bacterial interactions.
Figure 5: Proposed dual roles for a host metabolite in host–pathogen interactions.

Similar content being viewed by others

References

  1. Curtis, T. P., Sloan, W. T. & Scannell, J. W. Estimating prokaryotic diversity and its limits. Proc. Natl Acad. Sci. USA 9, 10494–10499 (2002).

    Article  Google Scholar 

  2. Young, I. M. & Crawford, J. W. Interactions and self-organization in the soil–microbe complex. Science 304, 1634–1637 (2004).

    Article  CAS  Google Scholar 

  3. Traxler, M. F. & Kolter, R. Natural products in soil microbe interactions and evolution. Nat. Prod. Rep. 32, 956–970 (2015).

    Article  CAS  Google Scholar 

  4. Fuqua, C. & Greenberg, E. P. Listening in on bacteria: acyl-homoserine lactone signaling. Nat. Rev. Mol. Cell Biol. 3, 685–695 (2002).

    Article  CAS  Google Scholar 

  5. Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).

    Article  CAS  Google Scholar 

  6. Pearson, J. P., Passador, L., Iglewski, B. H. & Greenberg, E. P. A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 92, 1490–1494 (1995).

    Article  CAS  Google Scholar 

  7. Fuqua, W. C. & Winans, S. C. A. LuxR–LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J. Bacteriol. 176, 2796–2806 (1994).

    Article  CAS  Google Scholar 

  8. Nett, M., Ikeda, H. & Moore, B. S. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat. Prod. Rep. 26, 1362–1384 (2009).

    Article  CAS  Google Scholar 

  9. Schaefer, A. L. et al. A new class of homoserine lactone quorum-sensing signals. Nature 454, 595–599 (2008).

    Article  CAS  Google Scholar 

  10. Ahlgren, N. A., Harwood, C. S., Schaefer, A. L., Giraud, E. & Greenberg, E. P. Aryl-homoserine lactone quorum sensing in stem-nodulating photosynthetic bradyrhizobia. Proc. Natl Acad. Sci. USA 108, 7183–7188 (2011).

    Article  Google Scholar 

  11. Schmidt, E. W. Trading molecules and tracking targets in symbiotic interactions. Nat. Chem. Biol. 4, 466–473 (2008).

    Article  CAS  Google Scholar 

  12. Schink, B. Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek 81, 257–261 (2002).

    Article  CAS  Google Scholar 

  13. Dubilier, N., Bergin, C. & Lott, C. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat. Rev. Microbiol. 6, 725–740 (2008).

    Article  CAS  Google Scholar 

  14. Stewart, F. J., Newton, I. L. & Cavanaugh, C. M. Chemosynthetic endosymbioses: adaptations to oxic–anoxic interfaces. Trends Microbiol. 13, 439–448 (2005).

    Article  CAS  Google Scholar 

  15. Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J. & Smith, A. G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438, 90–93 (2005).

    Article  CAS  Google Scholar 

  16. Stupp, G. S. et al. Chemical detoxification of small molecules by Caenorhabditis elegans. ACS Chem. Biol. 8, 309–313 (2013).

    Article  CAS  Google Scholar 

  17. Wright, G. D. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat. Rev. Microbiol. 5, 175–186 (2007).

    Article  CAS  Google Scholar 

  18. Pan, C. et al. Characterization of anaerobic catabolism of p-coumarate in Rhodopseudomonas palustris by integrating transcriptomics and quantitative proteomics. Mol. Cell Proteomics 7, 938–948 (2008).

    Article  CAS  Google Scholar 

  19. Larimer, F. W. et al. Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat. Biotechnol. 22, 55–61 (2004).

    Article  CAS  Google Scholar 

  20. Palmer, A. G. & Blackwell, H. E. Deciphering a protolanguage for bacteria–host communication. Nat. Chem. Biol. 4, 452–454 (2008).

    Article  CAS  Google Scholar 

  21. Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326, 655–661 (1987).

    Article  CAS  Google Scholar 

  22. Holligan, P. M., Viollier, M., Harbour, D. S., Camus, P. & Champagne-Philippe, M. Satellite and ship studies of coccolithophore production along a continental shelf edge. Nature 304, 339–342 (1983).

    Article  CAS  Google Scholar 

  23. Wagner-Döbler, I. & Biebl, H. Environmental biology of the marine Roseobacter lineage. Annu. Rev. Microbiol. 60, 255–280 (2006).

    Article  Google Scholar 

  24. Geng, H. & Belas, R. Molecular mechanisms underlying Roseobacter–phytoplankton symbioses. Curr. Opin. Biotechnol. 21, 332–338 (2010).

    Article  CAS  Google Scholar 

  25. Brinkhoff, T., Giebel, H. A. & Simon, M. Diversity, ecology, and genomics of the Rosebacter clade: a short overview. Arch. Microbiol. 189, 531–539 (2008).

    Article  CAS  Google Scholar 

  26. Kiene, R. P., Linn, L. J., González, J., Moran, M. A. & Bruton, J. A. Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein–sulfur in marine bacterioplankton. Appl. Environ. Microbiol. 65, 4549–4558 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Reisch, C. R. et al. Novel pathway for assimilation of dimehtylsulphoniopropionate widespread in marine bacteria. Nature 473, 208–211 (2011).

    Article  CAS  Google Scholar 

  28. Thiel, V. et al. Identification and biosynthesis of tropone derivatives and sulfur volatiles produced by bacteria of the marine Roseobacter clade. Org. Biomol. Chem. 8, 234–246 (2010).

    Article  CAS  Google Scholar 

  29. Brinkhoff, T. et al. Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl. Environ. Microbiol. 70, 2560–2565 (2004).

    Article  CAS  Google Scholar 

  30. Seyedsayamdost, M. R., Case, R. J., Kolter, R. & Clardy, J. The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat. Chem. 3, 331–335 (2011).

    Article  CAS  Google Scholar 

  31. Seyedsayamdost, M. R., Carr, G., Kolter, R. & Clardy, J. Roseobacticides: small molecule modulators of an algal–bacterial symbiosis. J. Am. Chem. Soc. 133, 18343–18349 (2011).

    Article  CAS  Google Scholar 

  32. González, J. M. et al. Bacterial community structure associated with a dimethylsulfoniopropionate-producing north Atlantic algal bloom. Appl. Environ. Microbiol. 66, 4237–4246 (2000).

    Article  Google Scholar 

  33. Lamy, D. et al. Temporal changes of major bacterial groups and bacterial heterotrophic activity during a Phaeocystic globosa bloom in the eastern English Channel. Aquat. Microb. Ecol. 58, 95–107 (2009).

    Article  Google Scholar 

  34. Seyedsayamdost, M. R., Wang, R., Kolter, R. & Clardy, J. Hybrid biosynthesis of roseobacticides from algal and bacterial precursor molecules. J. Am. Chem. Soc. 136, 15150–15153 (2014).

    Article  CAS  Google Scholar 

  35. Wang, R., Gallant, É. & Seyedsayamdost, M. R. Investigation of the genetics and biochemistry of roseobacticide production in the Roseobacter clade bacterium Phaeobacter inhibens. mBio 7, e02118-15 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Trost, B. M. The atom economy — a search for synthetic efficiency. Science 254, 1471–1477 (1991).

    Article  CAS  Google Scholar 

  37. Alborn, H. T. et al. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276, 945–949 (1997).

    Article  CAS  Google Scholar 

  38. Paré, P. W., Alborn, H. T. & Tumlinson, J. H. Concerted biosynthesis of an insect elicitor of plant volatiles. Proc. Natl Acad. Sci. USA 95, 13971–13975 (1998).

    Article  Google Scholar 

  39. Lait, C. G., Alborn, H. T., Teal, P. E. & Tumlinson, J. H. Rapid biosynthesis of N-linolenoyl-L-glutamine, an elicitor of plant volatiles, by membrane-associated enzyme(s) in Manduca sexta. Proc. Natl Acad. Sci. USA 100, 7027–7032 (2003).

    Article  CAS  Google Scholar 

  40. Yoshinaga, N., Morigaki, N., Matsuda, F., Nishida, R. & Mori, N. In vitro biosynthesis of volicitin in Spodoptera litura. Insect Biochem. Mol. Biol. 35, 175–184 (2005).

    Article  CAS  Google Scholar 

  41. Paré, P. W. & Tumlinson, J. H. Induced synthesis of plant volatiles. Nature 385, 30–31 (1997).

    Article  Google Scholar 

  42. De Moraes, C. M., Lewis, W. J., Paré, P. W., Alborn, H. T. & Tumlinson, J. H. Herbivore-infested plants selectively attract parasitoids. Nature 393, 570–573 (1998).

    Article  CAS  Google Scholar 

  43. Turlings, T. C. J., Tumlinson, J. H. & Lewis, W. J. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250, 1251–1253 (1990).

    Article  CAS  Google Scholar 

  44. Fazeau-Braesch, S., Genin, E., Jullien, R., Knowles, E. & Papin, C. Composition and role of volatile substances in atmosphere surrounding two gregarious locusts, Locusta migratoria and Schistocerca gregaria. J. Chem. Ecol. 14, 1023–1033 (1988).

    Article  Google Scholar 

  45. Torto, B., Obeng-Ofori, D., Njagi, P. G., Hassanali, A. & Amiani, H. Aggregation pheromone system of adult gregarious desert locust Schistocerca gregaria (forskal). J. Chem. Ecol. 20, 1749–1762 (1994).

    Article  CAS  Google Scholar 

  46. Obeng-Ofori, D., Torto, B., Njagi, P. G., Hassanali, A. & Amiani, H. Fecal volatiles as part of the aggregation pheromone complex of the desert locust, Schistocerca gregaria (forskal) (Orthoptera: Acrididae). J. Chem. Ecol. 20, 2077–2087 (1994).

    Article  CAS  Google Scholar 

  47. Charnley, A. K., Hunt, J. & Dillon, R. J. The germ-free culture of desert locusts, Schistocerca gregaria. J. Insect. Physiol. 31, 477–485 (1985).

    Article  Google Scholar 

  48. Dillon, R. J., Vennard, C. T. & Charnley, A. K. Pheromones: exploitation of gut bacteria in the locust. Nature 403, 851 (2000).

    Article  CAS  Google Scholar 

  49. Dillon, R. J., Vennard, C. T. & Charnley, A. K. A note: gut bacteria produce components of a locust cohesion pheromone. J. Appl. Microbiol. 92, 759–763 (2002).

    Article  CAS  Google Scholar 

  50. Schmidt, E. W. & Donia, M. S. Life in cellulose houses: symbiotic bacterial biosynthesis of ascidian drugs and drug leads. Curr. Opin. Biotechnol. 21, 827–833 (2010).

    Article  CAS  Google Scholar 

  51. Sings, H. L. & Rinehart, K. L. Compounds produced from potential tunicate-blue-green algal symbiosis: a review. J. Ind. Microbiol. 17, 385–396 (1996).

    CAS  Google Scholar 

  52. Sings, H. L., Bible, K. C. & Rinehart, K. L. Acyl tunichlorins: a new class of nickel chlorins isolated from the Caribbean tunicate Trididemnum solidum. Proc. Natl Acad. Sci. USA 93, 10560–10565 (1996).

    Article  CAS  Google Scholar 

  53. Kustin, K. & McLeod, G. C. Interactions between metal ions and living organisms in sea water. Top. Curr. Chem. 69, 1–37 (1977).

    Article  CAS  Google Scholar 

  54. Rayner-Canham, G. W., Van Roode, M. & Burke, J. Nickel and cobalt concentrations in the tunicate Halocynthia pyriformis: evidence for essentiality of the two metals. Inorg. Chim. Acta 106, L37–L38 (1985).

    Article  CAS  Google Scholar 

  55. Pettit, G. R. et al. The isolation and structure of a remarkable marine animal antineoplastic constituent: dolastatin 10. J. Am. Chem. Soc. 109, 6883–6885 (1987).

    Article  CAS  Google Scholar 

  56. Pukatzki, S. & Provenzano, D. Vibrio cholerae as a predator: lessons from evolutionary principles. Front. Microbiol. 4, 384 (2013).

    Article  Google Scholar 

  57. Bassler, B. L. & Losick, R. Bacterially speaking. Cell 125, 237–246 (2006).

    Article  CAS  Google Scholar 

  58. Chen, X. et al. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415, 545–549 (2002).

    Article  CAS  Google Scholar 

  59. Higgins, D. A. et al. The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature 450, 883–886 (2007).

    Article  CAS  Google Scholar 

  60. Papenfort, K., Förstner, K. U., Cong, J. P., Sharma, C. M. & Bassler, B. L. Differential RNA-seq of Vibrio cholerae identifies the VqmR small RNA as a regulator of biofilm formation. Proc. Natl Acad. Sci. USA 112, E766–E775 (2015).

    Article  CAS  Google Scholar 

  61. Papenfort, K. et al. Vibrio cholerae autoinducer—receptor pair that controls biofilm formation. Nat. Chem. Biol. (in the press).

  62. McGuckin, M. A., Lindén, S. K., Sutton, P. & Florin, T. H. Mucin dynamics and enteric pathogens. Nat. Rev. Microbiol. 9, 265–278 (2011).

    Article  CAS  Google Scholar 

  63. Millet, Y. A. et al. Insights into Vibrio cholerae intestinal colonization from monitoring fluorescently labeled bacteria. PLoS Pathog. 10, e1004405 (2014).

    Article  Google Scholar 

  64. Crawford, J. M., Kontnik, R. & Clardy, J. Regulating alternative lifestyles in entomopathogenic bacteria. Curr. Biol. 20, 69–74 (2010).

    Article  CAS  Google Scholar 

  65. Fang, A., Keables, P. & Demain, A. L. Unexpected enhancement of β-lactam antibiotic formation in Streptomyces clavuligerus by very high concentrations of exogenous lysine. Appl. Microbiol. Biotechnol. 44, 705–709 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the author's laboratory on microbial symbiotic interactions was generously supported by the US National Institutes of Health (grant GM098299) and the Pew Biomedical Scholars Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad R. Seyedsayamdost.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Seyedsayamdost, M. Opinion: Hijacking exogenous signals to generate new secondary metabolites during symbiotic interactions. Nat Rev Chem 1, 0021 (2017). https://doi.org/10.1038/s41570-017-0021

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-017-0021

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing