Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Central CD4+ T cell tolerance: deletion versus regulatory T cell differentiation

Abstract

The diversion of MHC class II-restricted thymocytes into the regulatory T (Treg) cell lineage is driven by intrathymic encounter of agonist self-antigens in a similar manner to the clonal deletion of thymocytes. Somewhat paradoxically, it thus seems that the expression of an autoreactive T cell receptor is a shared characteristic of T cells that are subject to clonal deletion and T cells that are diverted into the Treg cell lineage. Here, we discuss how thymocyte-intrinsic and thymocyte-extrinsic determinants may specify the choice between these two fundamentally different T cell fates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Signal strength models of clonal deletion versus regulatory T cell differentiation.
Fig. 2: How T cell-intrinsic developmental windows of opportunity may influence the mode of CD4+ T cell tolerance.
Fig. 3: Model for thymocyte integration of T cell receptor signalling strength and number of antigen encounters.
Fig. 4: Model of limited developmental niches for antigen-specific regulatory T cells.

Similar content being viewed by others

References

  1. Kappler, J. W., Roehm, N. & Marrack, P. T cell tolerance by clonal elimination in the thymus. Cell 49, 273–280 (1987).

    CAS  PubMed  Google Scholar 

  2. Kisielow, P., Bluthmann, H., Staerz, U. D., Steinmetz, M. & von Boehmer, H. Tolerance in T cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333, 742–746 (1988).

    CAS  PubMed  Google Scholar 

  3. Modigliani, Y. et al. Lymphocytes selected in allogeneic thymic epithelium mediate dominant tolerance toward tissue grafts of the thymic epithelium haplotype. Proc. Natl Acad. Sci. USA 92, 7555–7559 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ohki, H., Martin, C., Corbel, C., Coltey, M. & Le Douarin, N. M. Tolerance induced by thymic epithelial grafts in birds. Science 237, 1032–1035 (1987).

    CAS  PubMed  Google Scholar 

  5. Salaun, J. et al. Thymic epithelium tolerizes for histocompatibility antigens. Science 247, 1471–1474 (1990).

    CAS  PubMed  Google Scholar 

  6. Fowell, D. & Mason, D. Evidence that the T cell repertoire of normal rats contains cells with the potential to cause diabetes. Characterization of the CD4+ T cell subset that inhibits this autoimmune potential. J. Exp. Med. 177, 627–636 (1993).

    CAS  PubMed  Google Scholar 

  7. Powrie, F., Leach, M. W., Mauze, S., Caddle, L. B. & Coffman, R. L. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int. Immunol. 5, 1461–1471 (1993).

    CAS  PubMed  Google Scholar 

  8. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  9. Thornton, A. M. et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 184, 3433–3441 (2010).

    CAS  PubMed  Google Scholar 

  10. Weiss, J. M. et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J. Exp. Med. 209, 1723–1742 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hsieh, C. S., Lee, H. M. & Lio, C. W. Selection of regulatory T cells in the thymus. Nat. Rev. Immunol. 12, 157–167 (2012).

    CAS  PubMed  Google Scholar 

  12. Klein, L. & Jovanovic, K. Regulatory T cell lineage commitment in the thymus. Semin. Immunol. 23, 401–409 (2011).

    CAS  PubMed  Google Scholar 

  13. Bautista, J. L. et al. Intraclonal competition limits the fate determination of regulatory T cells in the thymus. Nat. Immunol. 10, 610–617 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Leung, M. W., Shen, S. & Lafaille, J. J. TCR-dependent differentiation of thymic Foxp3+ cells is limited to small clonal sizes. J. Exp. Med. 206, 2121–2130 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hsieh, C. S., Zheng, Y., Liang, Y., Fontenot, J. D. & Rudensky, A. Y. An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nat. Immunol. 7, 401–410 (2006).

    CAS  PubMed  Google Scholar 

  16. Pacholczyk, R., Ignatowicz, H., Kraj, P. & Ignatowicz, L. Origin and T cell receptor diversity of Foxp3+ CD4+ CD25+ T cells. Immunity 25, 249–259 (2006).

    CAS  PubMed  Google Scholar 

  17. Apostolou, I., Sarukhan, A., Klein, L. & von Boehmer, H. Origin of regulatory T cells with known specificity for antigen. Nat. Immunol. 3, 756–763 (2002).

    CAS  PubMed  Google Scholar 

  18. Jordan, M. S. et al. Thymic selection of CD4+ CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol. 2, 301–306 (2001).

    CAS  PubMed  Google Scholar 

  19. Klein, L., Khazaie, K. & von Boehmer, H. In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc. Natl Acad. Sci. USA 100, 8886–8891 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Picca, C. C. et al. Thymocyte deletion can bias Treg formation toward low-abundance self-peptide. Eur. J. Immunol. 39, 3301–3306 (2009).

    PubMed  PubMed Central  Google Scholar 

  21. Legoux, F. P. et al. CD4+ T cell tolerance to tissue-restricted self antigens is mediated by antigen-specific regulatory T cells rather than deletion. Immunity 43, 896–908 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Malhotra, D. et al. Tolerance is established in polyclonal CD4+ T cells by distinct mechanisms, according to self-peptide expression patterns. Nat. Immunol. 17, 187–195 (2016). References 21 and 22 indicate that in the polyclonal repertoire, a TRA-like pattern of antigen expression favours T reg cell induction over deletion, which reveals a correlation between self-antigen expression patterns and the mode of CD4 + T cell tolerance.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Malchow, S. et al. Aire enforces immune tolerance by directing autoreactive T cells into the regulatory T cell lineage. Immunity 44, 1102–1113 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Perry, J. S. et al. Distinct contributions of Aire and antigen-presenting-cell subsets to the generation of self-tolerance in the thymus. Immunity 41, 414–426 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang, S., Fujikado, N., Kolodin, D., Benoist, C. & Mathis, D. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 348, 589–594 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Anderson, M. S. et al. The cellular mechanism of Aire control of T cell tolerance. Immunity 23, 227–239 (2005).

    CAS  PubMed  Google Scholar 

  27. DeVoss, J. et al. Spontaneous autoimmunity prevented by thymic expression of a single self-antigen. J. Exp. Med. 203, 2727–2735 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Klein, L., Klein, T., Ruther, U. & Kyewski, B. CD4 T cell tolerance to human C-reactive protein, an inducible serum protein, is mediated by medullary thymic epithelium. J. Exp. Med. 188, 5–16 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Liston, A., Lesage, S., Wilson, J., Peltonen, L. & Goodnow, C. C. Aire regulates negative selection of organ-specific T cells. Nat. Immunol. 4, 350–354 (2003).

    CAS  PubMed  Google Scholar 

  30. Taniguchi, R. T. et al. Detection of an autoreactive T cell population within the polyclonal repertoire that undergoes distinct autoimmune regulator (Aire)-mediated selection. Proc. Natl Acad. Sci. USA 109, 7847–7852 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kurd, N. & Robey, E. A. T cell selection in the thymus: a spatial and temporal perspective. Immunol. Rev. 271, 114–126 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Petrie, H. T. & Zuniga-Pflucker, J. C. Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu. Rev. Immunol. 25, 649–679 (2007).

    CAS  PubMed  Google Scholar 

  33. Klein, L., Kyewski, B., Allen, P. M. & Hogquist, K. A. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat. Rev. Immunol. 14, 377–391 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ebert, P. J., Ehrlich, L. I. & Davis, M. M. Low ligand requirement for deletion and lack of synapses in positive selection enforce the gauntlet of thymic T cell maturation. Immunity 29, 734–745 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Peterson, D. A., DiPaolo, R. J., Kanagawa, O. & Unanue, E. R. Cutting edge: negative selection of immature thymocytes by a few peptide-MHC complexes: differential sensitivity of immature and mature T cells. J. Immunol. 162, 3117–3120 (1999).

    CAS  PubMed  Google Scholar 

  36. Daley, S. R., Hu, D. Y. & Goodnow, C. C. Helios marks strongly autoreactive CD4+ T cells in two major waves of thymic deletion distinguished by induction of PD-1 or NF-kappaB. J. Exp. Med. 210, 269–285 (2013). This study reveals the extent, stage and molecular nature of two distinct waves of clonal deletion in the normal thymus.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Stritesky, G. L. et al. Murine thymic selection quantified using a unique method to capture deleted T cells. Proc. Natl Acad. Sci. USA 110, 4679–4684 (2013). This paper uses an elegant method to assess the quantitative impact of clonal deletion at different stages of thymocyte differentiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fontenot, J. D., Dooley, J. L., Farr, A. G. & Rudensky, A. Y. Developmental regulation of Foxp3 expression during ontogeny. J. Exp. Med. 202, 901–906 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee, H. M. & Hsieh, C. S. Rare development of Foxp3+ thymocytes in the CD4+CD8+ subset. J. Immunol. 183, 2261–2266 (2009).

    CAS  PubMed  Google Scholar 

  40. Wirnsberger, G., Mair, F. & Klein, L. Regulatory T cell differentiation of thymocytes does not require a dedicated antigen-presenting cell but is under T cell-intrinsic developmental control. Proc. Natl Acad. Sci. USA 106, 10278–10283 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kishimoto, H. & Sprent, J. Negative selection in the thymus includes semimature T cells. J. Exp. Med. 185, 263–271 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Le Borgne, M. et al. The impact of negative selection on thymocyte migration in the medulla. Nat. Immunol. 10, 823–830 (2009).

    PubMed  PubMed Central  Google Scholar 

  43. Ueda, Y. et al. Mst1 regulates integrin-dependent thymocyte trafficking and antigen recognition in the thymus. Nat. Commun. 3, 1098 (2012).

    PubMed  Google Scholar 

  44. Dzhagalov, I. L., Chen, K. G., Herzmark, P. & Robey, E. A. Elimination of self-reactive T cells in the thymus: a timeline for negative selection. PLOS Biol. 11, e1001566 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sauer, S. et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl Acad. Sci. USA 105, 7797–7802 (2008). This study uses in vitro approaches to suggest that temporal aspects of TCR signalling might be crucial for FOXP3 induction during T reg cell differentiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Khailaie, S., Robert, P. A., Toker, A., Huehn, J. & Meyer-Hermann, M. A signal integration model of thymic selection and natural regulatory T cell commitment. J. Immunol. 193, 5983–5996 (2014). This is a bioinformatic study that introduces a TCR signal integration model of thymic selection, describing how thymocyte cell fates might be based upon the TCR stimulation history.

    CAS  PubMed  Google Scholar 

  47. Au-Yeung, B. B. et al. Quantitative and temporal requirements revealed for Zap70 catalytic activity during T cell development. Nat. Immunol. 15, 687–694 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Daniels, M. A. et al. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444, 724–729 (2006).

    CAS  PubMed  Google Scholar 

  49. Mariathasan, S. et al. Duration and strength of extracellular signal-regulated kinase signals are altered during positive versus negative thymocyte selection. J. Immunol. 167, 4966–4973 (2001).

    CAS  PubMed  Google Scholar 

  50. Wu, L. & Shortman, K. Heterogeneity of thymic dendritic cells. Semin. Immunol. 17, 304–312 (2005).

    CAS  PubMed  Google Scholar 

  51. Hu, Z. et al. CCR7 modulates the generation of thymic regulatory T cells by altering the composition of the thymic dendritic cell compartment. Cell Rep. 21, 168–180 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hadeiba, H. et al. Plasmacytoid dendritic cells transport peripheral antigens to the thymus to promote central tolerance. Immunity 36, 438–450 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yamano, T. et al. Thymic B cells are licensed to present self antigens for central T cell tolerance induction. Immunity 42, 1048–1061 (2015).

    CAS  PubMed  Google Scholar 

  54. Yamano, T., Steinert, M. & Klein, L. Thymic B cells and central T cell tolerance. Front. Immunol. 6, 376 (2015).

    PubMed  PubMed Central  Google Scholar 

  55. Hinterberger, M. et al. Autonomous role of medullary thymic epithelial cells in central CD4+ T cell tolerance. Nat. Immunol. 11, 512–519 (2010).

    CAS  PubMed  Google Scholar 

  56. Ohnmacht, C. et al. Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J. Exp. Med. 206, 549–559 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. van Meerwijk, J. P. et al. Quantitative impact of thymic clonal deletion on the T cell repertoire. J. Exp. Med. 185, 377–383 (1997).

    PubMed  PubMed Central  Google Scholar 

  58. Malek, T. R. The biology of interleukin-2. Annu. Rev. Immunol. 26, 453–479 (2008).

    CAS  PubMed  Google Scholar 

  59. Burchill, M. A. et al. Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity 28, 112–121 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lio, C. W. & Hsieh, C. S. A two-step process for thymic regulatory T cell development. Immunity 28, 100–111 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bending, D. et al. A timer for analyzing temporally dynamic changes in transcription during differentiation in vivo. J. Cell. Biol. 217, 2931–2950 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Marshall, D., Sinclair, C., Tung, S. & Seddon, B. Differential requirement for IL-2 and IL-15 during bifurcated development of thymic regulatory T cells. J. Immunol. 193, 5525–5533 (2014).

    CAS  PubMed  Google Scholar 

  63. Tai, X. et al. Foxp3 transcription factor is proapoptotic and lethal to developing regulatory T cells unless counterbalanced by cytokine survival signals. Immunity 38, 1116–1128 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bayer, A. L., Lee, J. Y., de la Barrera, A., Surh, C. D. & Malek, T. R. A function for IL-7R for CD4+CD25+Foxp3+ T regulatory cells. J. Immunol. 181, 225–234 (2008).

    CAS  PubMed  Google Scholar 

  65. Vang, K. B. et al. IL-2, -7, and -15, but not thymic stromal lymphopoeitin, redundantly govern CD4+Foxp3+ regulatory T cell development. J. Immunol. 181, 3285–3290 (2008).

    CAS  PubMed  Google Scholar 

  66. Yao, Z. et al. Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 109, 4368–4375 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bayer, A. L., Yu, A., Adeegbe, D. & Malek, T. R. Essential role for interleukin-2 for CD4+CD25+ T regulatory cell development during the neonatal period. J. Exp. Med. 201, 769–777 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Weist, B. M., Kurd, N., Boussier, J., Chan, S. W. & Robey, E. A. Thymic regulatory T cell niche size is dictated by limiting IL-2 from antigen-bearing dendritic cells and feedback competition. Nat. Immunol. 16, 635–641 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Owen, D. L. et al. Identification of cellular sources of IL-2 needed for regulatory T cell development and homeostasis. J. Immunol. 200, 3926–3933 (2018).

    CAS  PubMed  Google Scholar 

  70. Boursalian, T. E., Golob, J., Soper, D. M., Cooper, C. J. & Fink, P. J. Continued maturation of thymic emigrants in the periphery. Nat. Immunol. 5, 418–425 (2004).

    CAS  PubMed  Google Scholar 

  71. Yang-Snyder, J. A. & Rothenberg, E. V. Spontaneous expression of interleukin-2 in vivo in specific tissues of young mice. Dev. Immunol. 5, 223–245 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wuest, S. C. et al. A role for interleukin-2 trans-presentation in dendritic cell-mediated T cell activation in humans, as revealed by daclizumab therapy. Nat. Med. 17, 604–609 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Thiault, N. et al. Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nat. Immunol. 16, 628–634 (2015). The results from this paper introduce the concept of feedback inhibition of intrathymic T reg cell differentiation by recirculating T reg cells from the periphery.

    CAS  PubMed  Google Scholar 

  74. Cowan, J. E. et al. Aire controls the recirculation of murine Foxp3+ regulatory T cells back to the thymus. Eur. J. Immunol. 48, 844–854 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Moran, A. E. et al. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J. Exp. Med. 208, 1279–1289 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. D’Cruz, L. M. & Klein, L. Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat. Immunol. 6, 1152–1159 (2005).

    PubMed  Google Scholar 

  77. Kishimoto, H. & Sprent, J. Several different cell surface molecules control negative selection of medullary thymocytes. J. Exp. Med. 190, 65–73 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Rubin, R. L. & Hermanson, T. M. Plasticity in the positive selection of T cells: affinity of the selecting antigen and IL-7 affect T cell responsiveness. Int. Immunol. 17, 959–971 (2005).

    CAS  Google Scholar 

  79. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    CAS  PubMed  Google Scholar 

  80. Tai, X., Cowan, M., Feigenbaum, L. & Singer, A. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat. Immunol. 6, 152–162 (2005).

    CAS  PubMed  Google Scholar 

  81. Lio, C. W., Dodson, L. F., Deppong, C. M., Hsieh, C. S. & Green, J. M. CD28 facilitates the generation of Foxp3 cytokine responsive regulatory T cell precursors. J. Immunol. 184, 6007–6013 (2010).

    CAS  PubMed  Google Scholar 

  82. Vang, K. B. et al. Cutting edge: CD28 and c-Rel-dependent pathways initiate regulatory T cell development. J. Immunol. 184, 4074–4077 (2010).

    CAS  PubMed  Google Scholar 

  83. Hinterberger, M., Wirnsberger, G. & Klein, L. B7/CD28 in central tolerance: costimulation promotes maturation of regulatory T cell precursors and prevents their clonal deletion. Front. Immunol. 2, 30 (2011).

    PubMed  PubMed Central  Google Scholar 

  84. Murray, M. E. et al. CD28-mediated pro-survival signaling induces chemotherapeutic resistance in multiple myeloma. Blood 123, 3770–3779 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bouillet, P. et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415, 922–926 (2002).

    CAS  PubMed  Google Scholar 

  86. Ouyang, W., Beckett, O., Ma, Q. & Li, M. O. Transforming growth factor-beta signaling curbs thymic negative selection promoting regulatory T cell development. Immunity 32, 642–653 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Punt, J. A., Havran, W., Abe, R., Sarin, A. & Singer, A. T cell receptor (TCR)-induced death of immature CD4+CD8+ thymocytes by two distinct mechanisms differing in their requirement for CD28 costimulation: implications for negative selection in the thymus. J. Exp. Med. 186, 1911–1922 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Dautigny, N., Le Campion, A. & Lucas, B. Timing and casting for actors of thymic negative selection. J. Immunol. 162, 1294–1302 (1999).

    CAS  PubMed  Google Scholar 

  89. Jones, L. A., Izon, D. J., Nieland, J. D., Linsley, P. S. & Kruisbeek, A. M. CD28–B7 interactions are not required for intrathymic clonal deletion. Int. Immunol. 5, 503–512 (1993).

    CAS  PubMed  Google Scholar 

  90. Page, D. M., Kane, L. P., Allison, J. P. & Hedrick, S. M. Two signals are required for negative selection of CD4+CD8+ thymocytes. J. Immunol. 151, 1868–1880 (1993).

    CAS  PubMed  Google Scholar 

  91. Tan, R., Teh, S. J., Ledbetter, J. A., Linsley, P. S. & Teh, H. S. B7 costimulates proliferation of CD48+ T lymphocytes but is not required for the deletion of immature CD4+8+ thymocytes. J. Immunol. 149, 3217–3224 (1992).

    CAS  PubMed  Google Scholar 

  92. Walunas, T. L., Sperling, A. I., Khattri, R., Thompson, C. B. & Bluestone, J. A. CD28 expression is not essential for positive and negative selection of thymocytes or peripheral T cell tolerance. J. Immunol. 156, 1006–1013 (1996).

    CAS  PubMed  Google Scholar 

  93. Pobezinsky, L. A. et al. Clonal deletion and the fate of autoreactive thymocytes that survive negative selection. Nat. Immunol. 13, 569–578 (2012). This study reconciles conflicting data on the role of CD28 in clonal deletion.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Collette, Y., Benziane, A., Razanajaona, D. & Olive, D. Distinct regulation of T cell death by CD28 depending on both its aggregation and T cell receptor triggering: a role for Fas–FasL. Blood 92, 1350–1363 (1998).

    CAS  PubMed  Google Scholar 

  95. Li, M. O. & Flavell, R. A. TGF-beta: a master of all T cell trades. Cell 134, 392–404 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kretschmer, K. et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nat. Immunol. 6, 1219–1227 (2005).

    CAS  PubMed  Google Scholar 

  98. Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T cell fate. Nature 463, 808–812 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Li, M. O., Sanjabi, S. & Flavell, R. A. Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 25, 455–471 (2006).

    CAS  PubMed  Google Scholar 

  100. Marie, J. C., Letterio, J. J., Gavin, M. & Rudensky, A. Y. TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J. Exp. Med. 201, 1061–1067 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu, Y. et al. A critical function for TGF-β signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat. Immunol. 9, 632–640 (2008).

    CAS  PubMed  Google Scholar 

  102. Chen, W. et al. Requirement for transforming growth factor β1 in controlling T cell apoptosis. J. Exp. Med. 194, 439–453 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Schlenner, S. M., Weigmann, B., Ruan, Q., Chen, Y. & von Boehmer, H. Smad3 binding to the foxp3 enhancer is dispensable for the development of regulatory T cells with the exception of the gut. J. Exp. Med. 209, 1529–1535 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Konkel, J. E., Jin, W., Abbatiello, B., Grainger, J. R. & Chen, W. Thymocyte apoptosis drives the intrathymic generation of regulatory T cells. Proc. Natl Acad. Sci. USA 111, E465–E473 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen, W. & Konkel, J. E. Development of thymic Foxp3+ regulatory T cells: TGF-β matters. Eur. J. Immunol. 45, 958–965 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Anderson, M. S. et al. Projection of an immunological self shadow within the thymus by the Aire protein. Science 298, 1395–1401 (2002).

    CAS  PubMed  Google Scholar 

  107. Derbinski, J., Schulte, A., Kyewski, B. & Klein, L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat. Immunol. 2, 1032–1039 (2001).

    CAS  PubMed  Google Scholar 

  108. Mathis, D. & Benoist, C. A decade of AIRE. Nat. Rev. Immunol. 7, 645–650 (2007).

    CAS  PubMed  Google Scholar 

  109. Peterson, P., Org, T. & Rebane, A. Transcriptional regulation by AIRE: molecular mechanisms of central tolerance. Nat. Rev. Immunol. 8, 948–957 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Derbinski, J. et al. Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J. Exp. Med. 202, 33–45 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Takaba, H. et al. Fezf2 orchestrates a thymic program of self-antigen expression for immune tolerance. Cell 163, 975–987 (2015).

    CAS  PubMed  Google Scholar 

  112. Sansom, S. N. et al. Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia. Genome. Res. 24, 1918–1931 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Smith, K. M., Olson, D. C., Hirose, R. & Hanahan, D. Pancreatic gene expression in rare cells of thymic medulla: evidence for functional contribution to T cell tolerance. Int. Immunol. 9, 1355–1365 (1997).

    CAS  PubMed  Google Scholar 

  114. Brennecke, P. et al. Single-cell transcriptome analysis reveals coordinated ectopic gene-expression patterns in medullary thymic epithelial cells. Nat. Immunol. 16, 933–941 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Meredith, M., Zemmour, D., Mathis, D. & Benoist, C. Aire controls gene expression in the thymic epithelium with ordered stochasticity. Nat. Immunol. 16, 942–949 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Nedjic, J., Aichinger, M., Mizushima, N. & Klein, L. Macroautophagy, endogenous MHC II loading and T cell selection: the benefits of breaking the rules. Curr. Opin. Immunol. 21, 92–97 (2009).

    CAS  PubMed  Google Scholar 

  117. Bonasio, R. et al. Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus. Nat. Immunol. 7, 1092–1100 (2006).

    CAS  PubMed  Google Scholar 

  118. Perry, J. S. A. et al. CD36 mediates cell-surface antigens to promote thymic development of the regulatory T cell receptor repertoire and allo-tolerance. Immunity 48, 923–936 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Lee, H. M., Bautista, J. L., Scott-Browne, J., Mohan, J. F. & Hsieh, C. S. A broad range of self-reactivity drives thymic regulatory T cell selection to limit responses to self. Immunity 37, 475–486 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Simons, D. M. et al. How specificity for self-peptides shapes the development and function of regulatory T cells. J. Leukoc. Biol. 88, 1099–1107 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Atibalentja, D. F., Murphy, K. M. & Unanue, E. R. Functional redundancy between thymic CD8α+ and Sirpα+ conventional dendritic cells in presentation of blood-derived lysozyme by MHC class II proteins. J. Immunol. 186, 1421–1431 (2011).

    CAS  PubMed  Google Scholar 

  122. Feuerer, M. et al. Enhanced thymic selection of FoxP3+ regulatory T cells in the NOD mouse model of autoimmune diabetes. Proc. Natl Acad. Sci. USA 104, 18181–18186 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Relland, L. M. et al. Affinity-based selection of regulatory T cells occurs independent of agonist-mediated induction of Foxp3 expression. J. Immunol. 182, 1341–1350 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L.K. receives support from the European Research Council (ERC-2016-ADG 742290 - TOLERANCE FOOTPRINT) and the Deutsche Forschungsgemeinschaft (CRC 1054 ‘Control and plasticity of cell fate decisions in the immune system’). E.A.R. is supported by grants from the US National Institutes of Health (NIH AI064227 and AI065537). C.-S.H. is supported by the US National Institutes of Health (NIH AI079187 and AI131349).

Reviewer information

Nature Reviews Immunology thanks T. Malek, P. Marrack and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ludger Klein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

This Review is dedicated to the memories of Bruno Kyewski and Harald von Boehmer, who both made seminal contributions to our understanding of central tolerance and who passed away in 2018.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Recessive tolerance

Any mode of tolerance that depends on clonal deletion or anergy induction. The term recessive refers to the fact that in order to be effective, essentially all self-reactive T cells need to be physically eliminated or functionally inactivated.

Dominant tolerance

Any mode of tolerance that depends on the suppressive action of regulatory cells and can therefore be transferred from tolerant to naive individuals.

Thymus-derived Treg cells

Cells that enter the regulatory T (Treg) cell lineage as a consequence of cell fate specification during T cell maturation in the thymus. By contrast, peripherally derived Treg cells arise through conversion of conventional forkhead box protein P3 (FOXP3) CD4+ cells in secondary lymphoid organs.

Tissue-restricted antigens

(TRAs). Self-antigens that are expressed by only one or a few peripheral tissues. The term TRA is an operational definition based on available expression catalogues, according to which TRAs are expressed in less than 5 tissues of 60 tested.

Central tolerance

Any mechanism of tolerance that shapes the T cell receptor composition and functionality of the T cell repertoire during selection in the thymus.

MHC class II tetramer

A staining reagent used to detect antigen-specific CD4+ T cells. It consists of four recombinantly expressed biotinylated MHC class II molecules (each carrying a covalently attached peptide epitope of interest) that are tetramerized via a fluorochrome-labelled streptavidin core.

Autoimmune regulator protein

(AIRE). AIRE was discovered through genetic mutation in patients with the monogenically inherited disease autoimmune polyendocrine syndrome 1. It is a transcriptional regulator that controls the expression of tissue-restricted antigens in medullary thymic epithelial cells (mTECs) but may also have similar or distinct functions in cells other than mTECs.

Ectopic transcription

Expression of a tissue-specific mRNA in a cell type where the respective gene product does not have any obvious function.

Peptide–MHC ligandome

The repertoire of peptides that are bound by MHC molecules on a given cell type.

Common cytokine receptor γ-chain family cytokines

c cytokines). The heterodimeric or heterotrimeric receptors for at least six cytokines (IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21) share a common γ-chain (known as γc or CD132). The receptors for IL-2 and IL-15 also share the β-subunit (CD122) but contain distinct α-subunits (CD25 and CD215, respectively). Both α-subunits confer high-affinity cytokine binding but are not directly involved in signal transduction.

Trans-presentation

Cytokine trans-presentation is best established for IL-15, whereby signalling in a responder cell results from recognition of complexes of IL-15 with the high-affinity IL-15Rα subunit (CD125) on the surface of a trans-presenting cell type, which may itself produce IL-15. It is controversial whether the IL-2Rα subunit (CD25) can bind IL-2 independently of other receptor subunits and thereby elicit IL-2 signalling in trans.

CD28–B7 signalling axis

CD28 is the prototypical co-stimulatory receptor expressed on the surface of T cells. It can bind to CD80 (also known as B7.1) or CD86 (also known as B7.2) on the surface of antigen-presenting cells.

CD8αα+ intraepithelial lymphocytes

Intraepithelial lymphocytes are enriched in αβ T cells that express CD8αα homodimers. These cells are thought to have a crucial function in immune regulation at mucosal interfaces, in particular in the intestine. There is evidence that CD8αα+ intraepithelial lymphocytes emerge from agonist selection in the thymus, but their exact developmental origin remains poorly understood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, L., Robey, E.A. & Hsieh, CS. Central CD4+ T cell tolerance: deletion versus regulatory T cell differentiation. Nat Rev Immunol 19, 7–18 (2019). https://doi.org/10.1038/s41577-018-0083-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-018-0083-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing