Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Flame-retardant surface treatments

Abstract

Flame retardants mitigate the threat of fire from inherently flammable materials responsible for sustaining a high standard of living. Although bulk flame retardants have proven effective for many years, there is now increased interest in the use of surface treatments to localize flame-retardant chemistry at the exterior of a material, where combustion occurs, in an effort to preserve desirable bulk properties and minimize the amount of additive needed. This Review provides a historical overview that leads to the most promising surface treatments that will help pave the way for developing more effective and non-intrusive flame retardants in the future. The way in which a fire transpires, and the various chemistries and mechanisms used to counteract fire propagation, are discussed. Challenges that remain to improve current flame-retardant surface treatments are also addressed, as the success of these treatments depends on the scalability, durability and ability to impart desired functionality without conferring environmental problems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanism for combustion and flame-retardant modes of action.
Fig. 2: Examples of impregnation-based flame-retardant chemistry.
Fig. 3: Plasma-assisted surface treatment.
Fig. 4: Sol–gel surface treatment.
Fig. 5: Polyelectrolyte treatments include layer-by-layer assembled coatings and directly deposited polyelectrolyte coatings.

Similar content being viewed by others

References

  1. Brushlinsky, N. N., Ahrens, M., Sokolov, S. V. & Wagner, P. World fire statistics. CTIF https://www.ctif.org/world-fire-statistics (2018).

  2. BBC News. How the tragedy unfolded at Grenfell Tower. BBC https://www.bbc.co.uk/news/uk-england-london-40272168 (2018).

  3. BBC News. Notre-Dame: massive fire ravages Paris cathedral. BBC https://www.bbc.co.uk/news/world-europe-47941794 (2019).

  4. Morgan, A. B. & Wilkie, C. A. in Fire Retardancy of Polymeric Materials 2nd edn 1–14 (CRC, 2010).

  5. Birnbaum, L. S. & Staskal, D. F. Brominated flame retardants: cause for concern? Environ. Health Perspect. 112, 9–17 (2004).

    CAS  Google Scholar 

  6. Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E. & Purnell, P. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 344, 179–199 (2018).

    CAS  Google Scholar 

  7. Green, J. Mechanisms for flame retardancy and smoke suppression – a review. J. Fire Sci. 14, 426–442 (1996).

    CAS  Google Scholar 

  8. Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J.-M. & Dubois, P. New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater. Sci. Eng. R Rep. 63, 100–125 (2009).

    Google Scholar 

  9. Wilson, W. E. Jr & Fristrom, R. M. Radicals in flames. APL. Tech. Dig. 2, 2–7 (1963).

    Google Scholar 

  10. Janbozorgi, M., Far, K. & Metghalchi, H. in Handbook of Combustion Vol. 1 (ed. Lackner, M.) 1–25 (Wiley-VCH, 2010).

  11. Boryniec, S. & Przygocki, W. Polymer combustion processes. 3. Flame retardants for polymeric materials. Prog. Rubber Plast. Recycl. Technol. 17, 127–148 (2001).

    Google Scholar 

  12. Kashiwagi, T. Polymer combustion and flammability—Role of the condensed phase. Symp. (Int.) Combust. 25, 1423–1437 (1994).

    Google Scholar 

  13. Camino, G., Costa, L. & Luda di Cortemiglia, M. P. Overview of fire retardant mechanisms. Polym. Degrad. Stab. 33, 131–154 (1991).

    CAS  Google Scholar 

  14. Shaw, S. Halogenated flame retardants: do the fire safety benefits justify the risks? Rev. Environ. Health 25, 261–305 (2010).

    CAS  Google Scholar 

  15. Shen, K. K. in Non-Halogenated Flame Retardant Handbook (eds Morgan, A. B. & Wilkie, C. A.) 201–241 (Wiley, 2014).

  16. Kilinc, M. Silicon Based Flame Retardants (Scrivener, 2014).

  17. Brown, S. C. in Plastic Additives: An A-Z Reference (ed. Pritchard, G.) 287–296 (Springer, 1998).

  18. Morgan, A. B., Cusack, P. A. & Wilkie, C. A. in Non-Halogenated Flame Retardant Handbook (eds Morgan, A. B. & Wilkie, C. A.) 347–403 (Wiley, 2014).

  19. Schartel, B. Phosphorus-based flame retardancy mechanisms—Old hat or a starting point for future development? Materials 3, 4710–4745 (2010).

    CAS  Google Scholar 

  20. Salmeia, K., Gaan, S. & Malucelli, G. Recent advances for flame retardancy of textiles based on phosphorus chemistry. Polymers 8, 319 (2016).

    Google Scholar 

  21. Salmeia, K., Fage, J., Liang, S. & Gaan, S. An overview of mode of action and analytical methods for evaluation of gas phase activities of flame retardants. Polymers 7, 504–526 (2015).

    CAS  Google Scholar 

  22. Schartel, B. et al. Flame retardancy of polymers: the role of specific reactions in the condensed phase. Macromol. Mater. Eng. 301, 9–35 (2016).

    CAS  Google Scholar 

  23. Velencoso, M. M., Battig, A., Markwart, J. C., Schartel, B. & Wurm, F. R. Molecular firefighting — how modern phosphorus chemistry can help solve the challenge of flame retardancy. Angew. Chem. Int. Ed. Engl. 57, 10450–10467 (2018).

    CAS  Google Scholar 

  24. Klatt, M. Nitrogen-based Flame Retardants (Scrivener, 2014).

  25. Schartel, B., Wilkie, C. A. & Camino, G. Recommendations on the scientific approach to polymer flame retardancy: part 2—Concepts. J. Fire Sci. 35, 3–20 (2017).

    CAS  Google Scholar 

  26. Horacek, H. & Grabner, R. Advantages of flame retardants based on nitrogen compounds. Polym. Degrad. Stab. 54, 205–215 (1996).

    CAS  Google Scholar 

  27. Vandersall, H. L. Intumescent coating systems, their development and chemistry. J. Fire Flamm. 2, 97–140 (1971).

    CAS  Google Scholar 

  28. Guin, T., Krecker, M., Milhorn, A. & Grunlan, J. C. Maintaining hand and improving fire resistance of cotton fabric through ultrasonication rinsing of multilayer nanocoating. Cellulose 21, 3023–3030 (2014).

    CAS  Google Scholar 

  29. Smith, R. J. et al. Environmentally benign halloysite nanotube multilayer assembly significantly reduces polyurethane flammability. Adv. Funct. Mater. 28, 1703289 (2018).

    Google Scholar 

  30. Holder, K. M., Huff, M. E., Cosio, M. N. & Grunlan, J. C. Intumescing multilayer thin film deposited on clay-based nanobrick wall to produce self-extinguishing flame retardant polyurethane. J. Mater. Sci. 50, 2451–2458 (2015).

    CAS  Google Scholar 

  31. Hull, T. R. in Advances in Fire Retardant Materials (eds Horrocks, A. R. & Price, D.) 255–290 (Woodhead, 2008).

  32. Dombrowski, R. Flame retardants for textile coatings. J. Coat. Fabr. 25, 224–238 (1996).

    CAS  Google Scholar 

  33. Wang, M. Y. et al. Flame retardant textile back-coatings. part 1: antimony-halogen system interactions and the effect of replacement by phosphorus-containing agents. J. Fire Sci. 18, 265–294 (2000).

    CAS  Google Scholar 

  34. Horrocks, A. R., Wang, M. Y., Hall, M. E., Sunmonu, F. & Pearson, J. S. Flame retardant textile back-coatings. part 2. Effectiveness of phosphorus-containing flame retardants in textile back-coating formulations. Polym. Int. 49, 1079–1091 (2000).

    CAS  Google Scholar 

  35. Giraud, S. et al. Flame retarded polyurea with microencapsulated ammonium phosphate for textile coating. Polym. Degrad. Stab. 88, 106–113 (2005).

    CAS  Google Scholar 

  36. Davies, P. J., Horrocks, A. R. & Alderson, A. The sensitisation of thermal decomposition of ammonium polyphosphate by selected metal ions and their potential for improved cotton fabric flame retardancy. Polym. Degrad. Stab. 88, 114–122 (2005).

    CAS  Google Scholar 

  37. Horrocks, A. R., Davies, P. J., Kandola, B. K. & Alderson, A. The potential for volatile phosphorus-containing flame retardants in textile back-coatings. J. Fire Sci. 25, 523–540 (2007).

    CAS  Google Scholar 

  38. Wesolek, D. & Gieparda, W. Single- and multiwalled carbon nanotubes with phosphorus based flame retardants for textiles. J. Nanomaterials 2014, 15 (2014).

    Google Scholar 

  39. Wesolek, D., Gasiorowski, R., Rojewski, S., Walentowska, J. & Wojcik, R. New flexible flame retardant coatings based on siloxane resin and ethylene-vinyl chloride copolymer. Polymers 8, 419 (2016).

    Google Scholar 

  40. Reeves, W. A. & Guthrie, J. D. Intermediate for flame-resistant polymers - reactions of tetrakis(hydroxymethyl)phosphonium chloride. Ind. Eng. Chem. 48, 64–67 (1956).

    CAS  Google Scholar 

  41. Cashen, N. A. & Reinhardt, R. M. Flame-retardant coating based on THPOH-dimethylolurea-NH3 for cellulosic and cellulosic-blend fabrics. Text. Res. J. 46, 899–903 (1976).

    CAS  Google Scholar 

  42. Jiang, Y. et al. Study on a novel multifunctional nanocomposite as flame retardant of leather. Polym. Degrad. Stab. 115, 110–116 (2015).

    CAS  Google Scholar 

  43. Zope, I. S., Foo, S., Seah, D. G. J., Akunuri, A. T. & Dasari, A. Development and evaluation of a water-based flame retardant spray coating for cotton fabrics. ACS Appl. Mater. Interfaces 9, 40782–40791 (2017).

    CAS  Google Scholar 

  44. National Research Council (US) Subcommittee on Flame-Retardant Chemicals. Toxicological Risks of Selected Flame-Retardant Chemicals (National Academies Press, 2000).

  45. Wu, W. & Yang, C. Q. Comparison of different reactive organophosphorus flame retardant agents for cotton: part I. The bonding of the flame retardant agents to cotton. Polym. Degrad. Stab. 91, 2541–2548 (2006).

    CAS  Google Scholar 

  46. Yang, H. & Yang, C. Q. Flame retardant finishing of nylon/cotton blend fabrics using a hydroxy-functional organophosphorus oligomer. Ind. Eng. Chem. Res. 47, 2160–2165 (2008).

    CAS  Google Scholar 

  47. Li, Y. et al. Durable flame retardant and antibacterial finishing on cotton fabrics with cyclotriphosphazene/polydopamine/silver nanoparticles hybrid coatings. Appl. Surf. Sci. 435, 1337–1343 (2018).

    CAS  Google Scholar 

  48. Yang, C. Q. & Wu, W. Combination of a hydroxy-functional organophosphorus oligomer and a multifunctional carboxylic acid as a flame retardant finishing system for cotton: part I. The chemical reactions. Fire Mater. 27, 223–237 (2003).

    CAS  Google Scholar 

  49. Yang, C. Q. & Wu, W. Combination of a hydroxy-functional organophosphorus oligomer and a multifunctional carboxylic acid as a flame retardant finishing system for cotton: part II. Formation of calcium salt during laundering. Fire Mater. 27, 239–251 (2003).

    CAS  Google Scholar 

  50. Liu, W., Chen, L. & Wang, Y.-Z. A novel phosphorus-containing flame retardant for the formaldehyde-free treatment of cotton fabrics. Polym. Degrad. Stab. 97, 2487–2491 (2012).

    CAS  Google Scholar 

  51. Bosco, F. et al. Thermal stability and flame resistance of cotton fabrics treated with whey proteins. Carbohydr. Polym. 94, 372–377 (2013).

    CAS  Google Scholar 

  52. Yang, C. Q. & Chen, Q. Flame retardant finishing of the polyester/cotton blend fabric using a cross-linkable hydroxy-functional organophosphorus oligomer. Fire Mater. 43, 283–293 (2019).

    CAS  Google Scholar 

  53. Yuan, H., Xing, W., Zhang, P., Song, L. & Hu, Y. Functionalization of cotton with UV-cured flame retardant coatings. Ind. Eng. Chem. Res. 51, 5394–5401 (2012).

    CAS  Google Scholar 

  54. Kim, S. J. & Jang, J. Synergistic UV-curable flame-retardant finish of cotton using comonomers of vinylphosphonic acid and acrylamide. Fibers Polym. 18, 2328–2333 (2017).

    CAS  Google Scholar 

  55. Yang, C. & Chen, Q. Heat release property and fire performance of the Nomex/cotton blend fabric treated with a nonformaldehyde organophosphorus system. Polymers 8, 327 (2016).

    Google Scholar 

  56. Cho, J. H. et al. Bioinspired catecholic flame retardant nanocoating for flexible polyurethane foams. Chem. Mater. 27, 6784–6790 (2015).

    CAS  Google Scholar 

  57. Kim, H. et al. Polydopamine-graphene oxide flame retardant nanocoatings applied via an aqueous liquid crystalline scaffold. Adv. Funct. Mater. 28, 1803172 (2018).

    Google Scholar 

  58. Xu, F. et al. Highly efficient flame-retardant and soft cotton fabric prepared by a novel reactive flame retardant. Cellulose 26, 4225–4240 (2019).

    CAS  Google Scholar 

  59. Blanchard, E. J. & Graves, E. E. Phosphorylation of cellulose with some phosphonic acid derivatives. Text. Res. J. 73, 22–26 (2003).

    CAS  Google Scholar 

  60. Feng, Y. et al. A plant-based reactive ammonium phytate for use as a flame-retardant for cotton fabric. Carbohydr. Polym. 175, 636–644 (2017).

    CAS  Google Scholar 

  61. Dong, C. et al. Preparation and properties of cotton fabrics treated with a novel antimicrobial and flame retardant containing triazine and phosphorus components. J. Therm. Anal. Calorim. 131, 1079–1087 (2018).

    CAS  Google Scholar 

  62. Liu, X. et al. Preparation of durable and flame retardant lyocell fibers by a one-pot chemical treatment. Cellulose 25, 6745–6758 (2018).

    CAS  Google Scholar 

  63. Xu, L., Wang, W. & Yu, D. Durable flame retardant finishing of cotton fabrics with halogen-free organophosphonate by UV photoinitiated thiol-ene click chemistry. Carbohydr. Polym. 172, 275–283 (2017).

    CAS  Google Scholar 

  64. Wang, L.-H. et al. Fire retardant viscose fiber fabric produced by graft polymerization of phosphorus and nitrogen-containing monomer. Cellulose 23, 2689–2700 (2016).

    CAS  Google Scholar 

  65. Tendero, C., Tixier, C., Tristant, P., Desmaison, J. & Leprince, P. Atmospheric pressure plasmas: a review. Spectrochim. Acta. B At. Spectrosc. 61, 2–30 (2006).

    Google Scholar 

  66. Akovali, G. & Gundogan, G. Studies on flame retardancy of polyacrylonitrile fiber treated by flame-retardant monomers in cold plasma. J. Appl. Polym. Sci. 41, 2011–2019 (1990).

    CAS  Google Scholar 

  67. Bourbigot, S. et al. New approach to flame retardancy using plasma assisted surface polymerisation techniques. Polym. Degrad. Stab. 66, 153–155 (1999).

    CAS  Google Scholar 

  68. Schartel, B., Kühn, G., Mix, R. & Friedrich, J. Surface controlled fire retardancy of polymers using plasma polymerisation. Macromol. Mater. Eng. 287, 579–582 (2002).

    CAS  Google Scholar 

  69. Errifai, I. et al. Elaboration of a fire retardant coating for polyamide-6 using cold plasma polymerization of a fluorinated acrylate. Surf. Coat. Technol. 180–181, 297–301 (2004).

    Google Scholar 

  70. Tsafack, M.-J., Hochart, F. & Levalois-Grützmacher, J. Polymerization and surface modification by low pressure plasma technique. Eur. Phys. J. Appl. Phys. 26, 215–219 (2004).

    CAS  Google Scholar 

  71. Tsafack, M. J. & Levalois-Grützmacher, J. Towards multifunctional surfaces using the plasma-induced graft-polymerization (PIGP) process: Flame and waterproof cotton textiles. Surf. Coat. Technol. 201, 5789–5795 (2007).

    CAS  Google Scholar 

  72. Yavuz, H., Rzaev, Z. & Dilsiz, N. Characterisation of flame retardant plasma polymer deposited BOPP film. Plast. Rubber Compos. 37, 268–275 (2008).

    CAS  Google Scholar 

  73. Horrocks, A. R., Nazaré, S., Masood, R., Kandola, B. & Price, D. Surface modification of fabrics for improved flash-fire resistance using atmospheric pressure plasma in the presence of a functionalized clay and polysiloxane. Polym. Adv. Technol. 22, 22–29 (2011).

    CAS  Google Scholar 

  74. Hilt, F., Gherardi, N., Duday, D., Berné, A. & Choquet, P. Efficient flame retardant thin films synthesized by atmospheric pressure PECVD through the high co-deposition rate of hexamethyldisiloxane and triethylphosphate on polycarbonate and polyamide-6 substrates. ACS Appl. Mater. Interfaces 8, 12422–12433 (2016).

    CAS  Google Scholar 

  75. Carosio, F., Alongi, J. & Frache, A. Influence of surface activation by plasma and nanoparticle adsorption on the morphology, thermal stability and combustion behavior of PET fabrics. Eur. Polym. J. 47, 893–902 (2011).

    CAS  Google Scholar 

  76. Kamlangkla, K., Hodak, S. K. & Levalois-Grützmacher, J. Multifunctional silk fabrics by means of the plasma induced graft polymerization (PIGP) process. Surf. Coat. Technol. 205, 3755–3762 (2011).

    CAS  Google Scholar 

  77. Totolin, V., Sarmadi, M., Manolache, S. O. & Denes, F. S. Environmentally friendly flame-retardant materials produced by atmospheric pressure plasma modifications. J. Appl. Polym. Sci. 124, 116–122 (2012).

    CAS  Google Scholar 

  78. Farag, Z. R. et al. Deposition of thick polymer or inorganic layers with flame-retardant properties by combination of plasma and spray processes. Surf. Coat. Technol. 228, 266–274 (2013).

    CAS  Google Scholar 

  79. Horrocks, A., Eivazi, S., Ayesh, M. & Kandola, B. Environmentally sustainable flame retardant surface treatments for textiles: the potential of a novel atmospheric plasma/UV laser technology. Fibers 6, 31 (2018).

    Google Scholar 

  80. Alongi, J. & Malucelli, G. State of the art and perspectives on sol–gel derived hybrid architectures for flame retardancy of textiles. J. Mater. Chem. 22, 21805–21809 (2012).

    CAS  Google Scholar 

  81. Hench, L. L. & West, J. K. The sol-gel process. Chem. Rev. 90, 33–72 (1990).

    CAS  Google Scholar 

  82. Esposito, S. “Traditional” sol-gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Materials 12, 668 (2019).

    CAS  Google Scholar 

  83. Hribernik, S. et al. Flame retardant activity of SiO2-coated regenerated cellulose fibres. Polym. Degrad. Stab. 92, 1957–1965 (2007).

    CAS  Google Scholar 

  84. Alongi, J., Ciobanu, M., Tata, J., Carosio, F. & Malucelli, G. Thermal stability and flame retardancy of polyester, cotton, and relative blend textile fabrics subjected to sol-gel treatments. J. Appl. Polym. Sci. 119, 1961–1969 (2011).

    CAS  Google Scholar 

  85. Alongi, J., Ciobanu, M. & Malucelli, G. Sol–gel treatments on cotton fabrics for improving thermal and flame stability: Effect of the structure of the alkoxysilane precursor. Carbohydr. Polym. 87, 627–635 (2012).

    CAS  Google Scholar 

  86. Alongi, J., Ciobanu, M. & Malucelli, G. Thermal stability, flame retardancy and mechanical properties of cotton fabrics treated with inorganic coatings synthesized through sol–gel processes. Carbohydr. Polym. 87, 2093–2099 (2012).

    CAS  Google Scholar 

  87. Cireli, A. et al. Development of flame retardancy properties of new halogen-free phosphorous doped SiO2 thin films on fabrics. J. Appl. Polym. Sci. 105, 3748–3756 (2007).

    Google Scholar 

  88. Yaman, N. Preparation and flammability properties of hybrid materials containing phosphorous compounds via sol-gel process. Fibers Polym. 10, 413–418 (2009).

    CAS  Google Scholar 

  89. Alongi, J., Ciobanu, M. & Malucelli, G. Novel flame retardant finishing systems for cotton fabrics based on phosphorus-containing compounds and silica derived from sol–gel processes. Carbohydr. Polym. 85, 599–608 (2011).

    CAS  Google Scholar 

  90. Brancatelli, G., Colleoni, C., Massafra, M. R. & Rosace, G. Effect of hybrid phosphorus-doped silica thin films produced by sol-gel method on the thermal behavior of cotton fabrics. Polym. Degrad. Stab. 96, 483–490 (2011).

    CAS  Google Scholar 

  91. Cheng, X.-W., Liang, C.-X., Guan, J.-P., Yang, X.-H. & Tang, R.-C. Flame retardant and hydrophobic properties of novel sol-gel derived phytic acid/silica hybrid organic-inorganic coatings for silk fabric. Appl. Surf. Sci. 427, 69–80 (2018).

    CAS  Google Scholar 

  92. Grancaric, A. M., Colleoni, C., Guido, E., Botteri, L. & Rosace, G. Thermal behaviour and flame retardancy of monoethanolamine-doped sol-gel coatings of cotton fabric. Prog. Org. Coat. 103, 174–181 (2017).

    CAS  Google Scholar 

  93. Nie, S., Jin, D., Yang, J., Dai, G. & Luo, Y. Fabrication of environmentally-benign flame retardant cotton fabrics with hydrophobicity by a facile chemical modification. Cellulose 26, 5147–5158 (2019).

    CAS  Google Scholar 

  94. Vasiljević, J. et al. Study of flame-retardant finishing of cellulose fibres: organic–inorganic hybrid versus conventional organophosphonate. Polym. Degrad. Stab. 98, 2602–2608 (2013).

    Google Scholar 

  95. Liu, Y. et al. Effect of phosphorus-containing inorganic-organic hybrid coating on the flammability of cotton fabrics: synthesis, characterization and flammability. Chem. Eng. J. 294, 167–175 (2016).

    CAS  Google Scholar 

  96. Jiang, Z. et al. Flame retardancy and thermal behavior of cotton fabrics based on a novel phosphorus-containing siloxane. Appl. Surf. Sci. 479, 765–775 (2019).

    CAS  Google Scholar 

  97. Castellano, A. et al. Synthesis and characterization of a phosphorous/nitrogen based sol-gel coating as a novel halogen- and formaldehyde-free flame retardant finishing for cotton fabric. Polym. Degrad. Stab. 162, 148–159 (2019).

    CAS  Google Scholar 

  98. Alongi, J., Ciobanu, M. & Malucelli, G. Cotton fabrics treated with hybrid organic–inorganic coatings obtained through dual-cure processes. Cellulose 18, 1335–1348 (2011).

    CAS  Google Scholar 

  99. Vasiljevic, J. et al. Multifunctional superhydrophobic/oleophobic and flame-retardant cellulose fibres with improved ice-releasing properties and passive antibacterial activity prepared via the sol–gel method. J. Sol-Gel Sci. Technol. 70, 385–399 (2014).

    CAS  Google Scholar 

  100. Šehić, A. et al. Synergistic inhibitory action of P- and Si-containing precursors in sol–gel coatings on the thermal degradation of polyamide 6. Polym. Degrad. Stab. 128, 245–252 (2016).

    Google Scholar 

  101. Qin, H., Li, X., Zhang, X. & Guo, Z. Preparation and performance testing of superhydrophobic flame retardant cotton fabric. N. J. Chem. 43, 5839–5848 (2019).

    CAS  Google Scholar 

  102. Wang, Y. & Zhao, J. Benign design and the evaluation of pyrolysis kinetics of polyester resin based intumescent system comprising of alkali-activated silica fume. Prog. Org. Coat. 122, 30–37 (2018).

    CAS  Google Scholar 

  103. Wang, Y. & Zhao, J. Comparative study on flame retardancy of silica fume-based geopolymer activated by different activators. J. Alloy. Compd. 743, 108–114 (2018).

    CAS  Google Scholar 

  104. Bentis, A. et al. Flammability and combustion behavior of cotton fabrics treated by the sol gel method using ionic liquids combined with different anions. Cellulose 26, 2139–2153 (2019).

    CAS  Google Scholar 

  105. Decher, G. & Hong, J. D. Buildup of ultrathin multilayer films by a self-assembly process: II. consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces. Ber. Bunsenges. Phys. Chem. 95, 1430–1434 (1991).

    CAS  Google Scholar 

  106. Decher, G. & Schlenoff, J. B. Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials 2nd edn (Wiley, 2012).

  107. Cain, A. A., Nolen, C. R., Li, Y.-C., Davis, R. & Grunlan, J. C. Phosphorous-filled nanobrick wall multilayer thin film eliminates polyurethane melt dripping and reduces heat release associated with fire. Polym. Degrad. Stab. 98, 2645–2652 (2013).

    CAS  Google Scholar 

  108. Li, Y.-C., Kim, Y. S., Shields, J. & Davis, R. Controlling polyurethane foam flammability and mechanical behaviour by tailoring the composition of clay-based multilayer nanocoatings. J. Mater. Chem. A 1, 12987–12997 (2013).

    CAS  Google Scholar 

  109. Kim, Y. S. & Davis, R. Multi-walled carbon nanotube layer-by-layer coatings with a trilayer structure to reduce foam flammability. Thin Solid Films 550, 184–189 (2014).

    CAS  Google Scholar 

  110. Pan, H. et al. Synergistic effect of layer-by-layer assembled thin films based on clay and carbon nanotubes to reduce the flammability of flexible polyurethane foam. Ind. Eng. Chem. Res. 53, 14315–14321 (2014).

    CAS  Google Scholar 

  111. Yang, Y.-H., Li, Y.-C., Shields, J. & Davis, R. D. Layer double hydroxide and sodium montmorillonite multilayer coatings for the flammability reduction of flexible polyurethane foams. J. Appl. Polym. Sci. 132, 41767 (2015).

    Google Scholar 

  112. Zhang, X., Shen, Q., Zhang, X., Pan, H. & Lu, Y. Graphene oxide-filled multilayer coating to improve flame-retardant and smoke suppression properties of flexible polyurethane foam. J. Mater. Sci. 51, 10361–10374 (2016).

    CAS  Google Scholar 

  113. Pan, H., Lu, Y., Song, L., Zhang, X. & Hu, Y. Construction of layer-by-layer coating based on graphene oxide/β-FeOOH nanorods and its synergistic effect on improving flame retardancy of flexible polyurethane foam. Compos. Sci. Technol. 129, 116–122 (2016).

    CAS  Google Scholar 

  114. Li, Y.-C., Yang, Y.-H., Kim, Y. S., Shields, J. & Davis, R. D. DNA-based nanocomposite biocoatings for fire-retarding polyurethane foam. Green Mater. 2, 144–152 (2014).

    Google Scholar 

  115. Liu, X. et al. Combination intumescent and kaolin-filled multilayer nanocoatings that reduce polyurethane flammability. Macromol. Mater. Eng. 304, 1800531 (2019).

    Google Scholar 

  116. Carosio, F., Di Blasio, A., Cuttica, F., Alongi, J. & Malucelli, G. Self-assembled hybrid nanoarchitectures deposited on poly(urethane) foams capable of chemically adapting to extreme heat. RSC Adv. 4, 16674–16680 (2014).

    CAS  Google Scholar 

  117. Alongi, J., Carosio, F. & Malucelli, G. Influence of ammonium polyphosphate-/poly(acrylic acid)-based layer by layer architectures on the char formation in cotton, polyester and their blends. Polym. Degrad. Stab. 97, 1644–1653 (2012).

    CAS  Google Scholar 

  118. Kumar Kundu, C. et al. A green approach to constructing multilayered nanocoating for flame retardant treatment of polyamide 66 fabric from chitosan and sodium alginate. Carbohydr. Polym. 166, 131–138 (2017).

    CAS  Google Scholar 

  119. Zanetti, M., Kashiwagi, T., Falqui, L. & Camino, G. Cone calorimeter combustion and gasification studies of polymer layered silicate nanocomposites. Chem. Mater. 14, 881–887 (2002).

    CAS  Google Scholar 

  120. Li, Y.-C., Schulz, J. & Grunlan, J. C. Polyelectrolyte/nanosilicate thin-film assemblies: influence of pH on growth, mechanical behavior, and flammability. ACS Appl. Mater. Interfaces 1, 2338–2347 (2009).

    CAS  Google Scholar 

  121. Li, Y.-C. et al. Flame retardant behavior of polyelectrolyte−clay thin film assemblies on cotton fabric. ACS Nano 4, 3325–3337 (2010).

    CAS  Google Scholar 

  122. Choi, K., Seo, S., Kwon, H., Kim, D. & Park, Y. T. Fire protection behavior of layer-by-layer assembled starch–clay multilayers on cotton fabric. J. Mater. Sci. 53, 11433–11443 (2018).

    CAS  Google Scholar 

  123. Huang, G., Yang, J., Gao, J. & Wang, X. Thin films of intumescent flame retardant-polyacrylamide and exfoliated graphene oxide fabricated via layer-by-layer assembly for improving flame retardant properties of cotton fabric. Ind. Eng. Chem. Res. 51, 12355–12366 (2012).

    CAS  Google Scholar 

  124. Ding, X. et al. Carbon nanotube-filled intumescent multilayer nanocoating on cotton fabric for enhancing flame retardant property. Surf. Coat. Technol. 305, 184–191 (2016).

    CAS  Google Scholar 

  125. Pan, H. et al. Construction of layer-by-layer assembled chitosan/titanate nanotubes based nanocoating on cotton fabrics: flame retardant performance and combustion behavior. Cellulose 22, 911–923 (2015).

    CAS  Google Scholar 

  126. Uğur, Ş. S., Sarıışık, M. & Aktaş, A. H. Nano-Al2O3 multilayer film deposition on cotton fabrics by layer-by-layer deposition method. Mater. Res. Bull. 46, 1202–1206 (2011).

    Google Scholar 

  127. Kandola, B. K., Horrocks, A. R., Price, D. & Coleman, G. V. Flame-retardant treatments of cellulose and their influence on the mechanism of cellulose pyrolysis. J. Macromol. Sci. C Polym. Rev. 36, 721–794 (1996).

    Google Scholar 

  128. Li, Y.-C. et al. Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric. Adv. Mater. 23, 3926–3931 (2011).

    CAS  Google Scholar 

  129. Kim, Y. S., Davis, R., Cain, A. A. & Grunlan, J. C. Development of layer-by-layer assembled carbon nanofiber-filled coatings to reduce polyurethane foam flammability. Polymer 52, 2847–2855 (2011).

    CAS  Google Scholar 

  130. Cain, A. A. et al. Iron-containing, high aspect ratio clay as nanoarmor that imparts substantial thermal/flame protection to polyurethane with a single electrostatically-deposited bilayer. J. Mater. Chem. A 2, 17609–17617 (2014).

    CAS  Google Scholar 

  131. Zhang, C., Milhorn, A., Haile, M., Mai, G. & Grunlan, J. C. Nanocoating of starch and clay that reduces the flammability of polyurethane foam. Green Mater. 5, 182–186 (2017).

    Google Scholar 

  132. Laufer, G., Kirkland, C., Cain, A. A. & Grunlan, J. C. Clay–chitosan nanobrick walls: completely renewable gas barrier and flame-retardant nanocoatings. ACS Appl. Mater. Interfaces 4, 1643–1649 (2012).

    CAS  Google Scholar 

  133. Qin, S. et al. Super gas barrier and fire resistance of nanoplatelet/nanofibril multilayer thin films. Adv. Mater. Interfaces 6, 1801424 (2019).

    Google Scholar 

  134. Pan, H. et al. Comparative study of layer by layer assembled multilayer films based on graphene oxide and reduced graphene oxide on flexible polyurethane foam: flame retardant and smoke suppression properties. RSC Adv. 6, 114304–114312 (2016).

    CAS  Google Scholar 

  135. Maddalena, L., Carosio, F., Gomez, J., Saracco, G. & Fina, A. Layer-by-layer assembly of efficient flame retardant coatings based on high aspect ratio graphene oxide and chitosan capable of preventing ignition of PU foam. Polym. Degrad. Stab. 152, 1–9 (2018).

    CAS  Google Scholar 

  136. Zhang, T. et al. Construction of flame retardant nanocoating on ramie fabric via layer-by-layer assembly of carbon nanotube and ammonium polyphosphate. Nanoscale 5, 3013–3021 (2013).

    CAS  Google Scholar 

  137. Holder, K. M. et al. Carbon nanotube multilayer nanocoatings prevent flame spread on flexible polyurethane foam. Macromol. Mater. Eng. 301, 665–673 (2016).

    CAS  Google Scholar 

  138. Pan, H. et al. Formation of layer-by-layer assembled titanate nanotubes filled coating on flexible polyurethane foam with improved flame retardant and smoke suppression properties. ACS Appl. Mater. Interfaces 7, 101–111 (2015).

    CAS  Google Scholar 

  139. Pan, H., Shen, Q., Zhang, Z., Yu, B. & Lu, Y. MoS2-filled coating on flexible polyurethane foam via layer-by-layer assembly technique: flame-retardant and smoke suppression properties. J. Mater. Sci. 53, 9340–9349 (2018).

    CAS  Google Scholar 

  140. Lazar, S. et al. Extreme heat shielding of clay/chitosan nanobrick wall on flexible foam. ACS Appl. Mater. Interfaces 10, 31686–31696 (2018).

    CAS  Google Scholar 

  141. Patra, D. et al. Inorganic nanoparticle thin film that suppresses flammability of polyurethane with only a single electrostatically-assembled bilayer. ACS Appl. Mater. Interfaces 6, 16903–16908 (2014).

    CAS  Google Scholar 

  142. Mu, X. et al. A single α-cobalt hydroxide/sodium alginate bilayer layer-by-layer assembly for conferring flame retardancy to flexible polyurethane foams. Mater. Chem. Phys. 191, 52–61 (2017).

    CAS  Google Scholar 

  143. Haile, M., Fomete, S., Lopez, I. D. & Grunlan, J. C. Aluminum hydroxide multilayer assembly capable of extinguishing flame on polyurethane foam. J. Mater. Sci. 51, 375–381 (2016).

    CAS  Google Scholar 

  144. Shi, X. et al. Bi-phase fire-resistant polyethylenimine/graphene oxide/melanin coatings using layer by layer assembly technique: smoke suppression and thermal stability of flexible polyurethane foams. Polymer 170, 65–75 (2019).

    CAS  Google Scholar 

  145. Carosio, F. & Fina, A. Three organic/inorganic nanolayers on flexible foam allow retaining superior flame retardancy performance upon mechanical compression cycles. Front. Mater. 6, 20 (2019).

    Google Scholar 

  146. Pan, Y. et al. Effect of layer-by-layer self-assembled sepiolite-based nanocoating on flame retardant and smoke suppressant properties of flexible polyurethane foam. Appl. Clay Sci. 168, 230–236 (2019).

    CAS  Google Scholar 

  147. Carosio, F., Negrell-Guirao, C., Alongi, J., David, G. & Camino, G. All-polymer layer by layer coating as efficient solution to polyurethane foam flame retardancy. Eur. Polym. J. 70, 94–103 (2015).

    CAS  Google Scholar 

  148. Carosio, F., Ghanadpour, M., Alongi, J. & Wågberg, L. Layer-by-layer-assembled chitosan/phosphorylated cellulose nanofibrils as a bio-based and flame protecting nano-exoskeleton on PU foams. Carbohydr. Polym. 202, 479–487 (2018).

    CAS  Google Scholar 

  149. Wang, X., Pan, Y.-T., Wan, J.-T. & Wang, D.-Y. An eco-friendly way to fire retardant flexible polyurethane foam: layer-by-layer assembly of fully bio-based substances. RSC Adv. 4, 46164–46169 (2014).

    CAS  Google Scholar 

  150. Laufer, G., Kirkland, C., Morgan, A. B. & Grunlan, J. C. Exceptionally flame retardant sulfur-based multilayer nanocoating for polyurethane prepared from aqueous polyelectrolyte solutions. ACS Macro Lett. 2, 361–365 (2013).

    CAS  Google Scholar 

  151. Jimenez, M. et al. Microintumescent mechanism of flame-retardant water-based chitosan-ammonium polyphosphate multilayer nanocoating on cotton fabric. J. Appl. Polym. Sci. 133, (2016).

  152. Laufer, G., Kirkland, C., Morgan, A. B. & Grunlan, J. C. Intumescent multilayer nanocoating, made with renewable polyelectrolytes, for flame-retardant cotton. Biomacromolecules 13, 2843–2848 (2012).

    CAS  Google Scholar 

  153. Zhang, T., Yan, H., Wang, L. & Fang, Z. Controlled formation of self-extinguishing intumescent coating on ramie fabric via layer-by-layer assembly. Ind. Eng. Chem. Res. 52, 6138–6146 (2013).

    CAS  Google Scholar 

  154. Fang, F. et al. Intumescent flame retardant coatings on cotton fabric of chitosan and ammonium polyphosphate via layer-by-layer assembly. Surf. Coat. Technol. 262, 9–14 (2015).

    CAS  Google Scholar 

  155. Alongi, J. et al. DNA: a novel, green, natural flame retardant and suppressant for cotton. J. Mater. Chem. A 1, 4779–4785 (2013).

    CAS  Google Scholar 

  156. Pan, H. et al. Layer-by-layer assembled thin films based on fully biobased polysaccharides: chitosan and phosphorylated cellulose for flame-retardant cotton fabric. Cellulose 21, 2995–3006 (2014).

    CAS  Google Scholar 

  157. Pan, H. et al. Formation of self-extinguishing flame retardant biobased coating on cotton fabrics via layer-by-layer assembly of chitin derivatives. Carbohydr. Polym. 115, 516–524 (2015).

    CAS  Google Scholar 

  158. Wang, L., Zhang, T., Yan, H., Peng, M. & Fang, Z. Modification of ramie fabric with a metal-ion-doped flame-retardant coating. J. Appl. Polym. Sci. 129, 2986–2997 (2013).

    CAS  Google Scholar 

  159. Yan, H., Zhao, L., Fang, Z. & Wang, H. Construction of multilayer coatings for flame retardancy of ramie fabric using layer-by-layer assembly: article. J. Appl. Polym. Sci. 134, 45556 (2017).

    Google Scholar 

  160. Liu, Y. et al. Effect of chitosan on the fire retardancy and thermal degradation properties of coated cotton fabrics with sodium phytate and APTES by LBL assembly. J. Anal. Appl. Pyrolysis 135, 289–298 (2018).

    CAS  Google Scholar 

  161. Li, S. et al. Phosphorus-nitrogen-silicon-based assembly multilayer coating for the preparation of flame retardant and antimicrobial cotton fabric. Cellulose 26, 4213–4223 (2019).

    CAS  Google Scholar 

  162. Huang, G., Liang, H., Wang, X. & Gao, J. Poly(acrylic acid)/clay thin films assembled by layer-by-layer deposition for improving the flame retardancy properties of cotton. Ind. Eng. Chem. Res. 51, 12299–12309 (2012).

  163. Jiang, S.-D. et al. Synthesis of mesoporous silica@Co–Al layered double hydroxide spheres: layer-by-layer method and their effects on the flame retardancy of epoxy resins. ACS Appl. Mater. Interfaces 6, 14076–14086 (2014).

    CAS  Google Scholar 

  164. Xuan, H., Ren, J., Wang, X., Zhang, J. & Ge, L. Flame-retardant, non-irritating and self-healing multilayer films with double-network structure. Compos. Sci. Technol. 145, 15–23 (2017).

    CAS  Google Scholar 

  165. Liu, L. et al. Layer-by-layer assembly of hypophosphorous acid-modified chitosan based coating for flame-retardant polyester–cotton blends. Ind. Eng. Chem. Res. 56, 9429–9436 (2017).

    CAS  Google Scholar 

  166. Fang, F. et al. Boron-containing intumescent multilayer nanocoating for extinguishing flame on cotton fabric. Cellulose 23, 2161–2172 (2016).

    CAS  Google Scholar 

  167. Alongi, J., Carosio, F. & Malucelli, G. Layer by layer complex architectures based on ammonium polyphosphate, chitosan and silica on polyester-cotton blends: flammability and combustion behaviour. Cellulose 19, 1041–1050 (2012).

    CAS  Google Scholar 

  168. Carosio, F., Alongi, J. & Malucelli, G. Layer by layer ammonium polyphosphate-based coatings for flame retardancy of polyester–cotton blends. Carbohydr. Polym. 88, 1460–1469 (2012).

    CAS  Google Scholar 

  169. Leistner, M., Abu-Odeh, A. A., Rohmer, S. C. & Grunlan, J. C. Water-based chitosan/melamine polyphosphate multilayer nanocoating that extinguishes fire on polyester-cotton fabric. Carbohydr. Polym. 130, 227–232 (2015).

    CAS  Google Scholar 

  170. Pan, Y., Liu, L., Wang, X., Song, L. & Hu, Y. Hypophosphorous acid cross-linked layer-by-layer assembly of green polyelectrolytes on polyester-cotton blend fabrics for durable flame-retardant treatment. Carbohydr. Polym. 201, 1–8 (2018).

    CAS  Google Scholar 

  171. Narkhede, M., Thota, S., Mosurkal, R., Muller, W. S. & Kumar, J. Layer-by-layer assembly of halogen-free polymeric materials on nylon/cotton blend for flame retardant applications: layer-by-layer assembly of halogen-free polymeric materials. Fire Mater. 40, 206–218 (2016).

    CAS  Google Scholar 

  172. Holder, K. M., Smith, R. J. & Grunlan, J. C. A review of flame retardant nanocoatings prepared using layer-by-layer assembly of polyelectrolytes. J. Mater. Sci. 52, 12923–12959 (2017).

    CAS  Google Scholar 

  173. Qiu, X., Li, Z., Li, X. & Zhang, Z. Flame retardant coatings prepared using layer by layer assembly: a review. Chem. Eng. J. 334, 108–122 (2018).

    CAS  Google Scholar 

  174. Richardson, J. J., Bjornmalm, M. & Caruso, F. Technology-driven layer-by-layer assembly of nanofilms. Science 348, aaa2491 (2015).

    Google Scholar 

  175. Richardson, J. J. et al. Innovation in layer-by-layer assembly. Chem. Rev. 116, 14828–14867 (2016).

    CAS  Google Scholar 

  176. Wang, Y. et al. Spray-drying-assisted layer-by-layer assembly of alginate, 3-aminopropyltriethoxysilane, and magnesium hydroxide flame retardant and its catalytic graphitization in ethylene–vinyl acetate resin. ACS Appl. Mater. Interfaces 10, 10490–10500 (2018).

    CAS  Google Scholar 

  177. Kim, Y. S., Li, Y.-C., Pitts, W. M., Werrel, M. & Davis, R. D. Rapid growing clay coatings to reduce the fire threat of furniture. ACS Appl. Mater. Interfaces 6, 2146–2152 (2014).

    CAS  Google Scholar 

  178. Mateos, A. J., Cain, A. A. & Grunlan, J. C. Large-scale continuous immersion system for layer-by-layer deposition of flame retardant and conductive nanocoatings on fabric. Ind. Eng. Chem. Res. 53, 6409–6416 (2014).

    CAS  Google Scholar 

  179. Chang, S., Slopek, R. P., Condon, B. & Grunlan, J. C. Surface coating for flame-retardant behavior of cotton fabric using a continuous layer-by-layer process. Ind. Eng. Chem. Res. 53, 3805–3812 (2014).

    CAS  Google Scholar 

  180. Apaydin, K. et al. Mechanistic investigation of a flame retardant coating made by layer-by-layer assembly. RSC Adv. 4, 43326–43334 (2014).

    CAS  Google Scholar 

  181. Carosio, F. et al. Tunable thermal and flame response of phosphonated oligoallylamines layer by layer assemblies on cotton. Carbohydr. Polym. 115, 752–759 (2015).

    CAS  Google Scholar 

  182. Carosio, F. & Alongi, J. Ultra-fast layer-by-layer approach for depositing flame retardant coatings on flexible PU foams within seconds. ACS Appl. Mater. Interfaces 8, 6315–6319 (2016).

    CAS  Google Scholar 

  183. Wang, X., Romero, M. Q., Zhang, X.-Q., Wang, R. & Wang, D.-Y. Intumescent multilayer hybrid coating for flame retardant cotton fabrics based on layer-by-layer assembly and sol–gel process. RSC Adv. 5, 10647–10655 (2015).

    CAS  Google Scholar 

  184. Ren, Y., Huo, T., Qin, Y. & Liu, X. Preparation of flame retardant polyacrylonitrile fabric based on sol-gel and layer-by-layer assembly. Materials 11, 483 (2018).

    Google Scholar 

  185. Kundu, C. K., Wang, X., Liu, L., Song, L. & Hu, Y. Few layer deposition and sol-gel finishing of organic-inorganic compounds for improved flame retardant and hydrophilic properties of polyamide 66 textiles: a hybrid approach. Prog. Org. Coat. 129, 318–326 (2019).

    CAS  Google Scholar 

  186. Cain, A. A., Murray, S., Holder, K. M., Nolen, C. R. & Grunlan, J. C. Intumescent nanocoating extinguishes flame on fabric using aqueous polyelectrolyte complex deposited in single step: intumescent nanocoating extinguishes flame on fabric. Macromol. Mater. Eng. 299, 1180–1187 (2014).

    CAS  Google Scholar 

  187. Haile, M., Fincher, C., Fomete, S. & Grunlan, J. C. Water-soluble polyelectrolyte complexes that extinguish fire on cotton fabric when deposited as pH-cured nanocoating. Polym. Degrad. Stab. 114, 60–64 (2015).

    CAS  Google Scholar 

  188. Leistner, M., Haile, M., Rohmer, S., Abu-Odeh, A. & Grunlan, J. C. Water-soluble polyelectrolyte complex nanocoating for flame retardant nylon-cotton fabric. Polym. Degrad. Stab. 122, 1–7 (2015).

    CAS  Google Scholar 

  189. Haile, M. et al. A wash-durable polyelectrolyte complex that extinguishes flames on polyester–cotton fabric. RSC Adv. 6, 33998–34004 (2016).

    CAS  Google Scholar 

  190. Cheng, X.-W., Guan, J.-P., Yang, X.-H., Tang, R.-C. & Yao, F. A bio-resourced phytic acid/chitosan polyelectrolyte complex for the flame retardant treatment of wool fabric. J. Clean. Prod. 223, 342–349 (2019).

    CAS  Google Scholar 

  191. Shi, X.-H. et al. Carbon fibers decorated by polyelectrolyte complexes toward their epoxy resin composites with high fire safety. Chin. J. Polym. Sci. 36, 1375–1384 (2018).

    CAS  Google Scholar 

  192. Kolibaba, T. J. & Grunlan, J. C. Environmentally benign polyelectrolyte complex that renders wood flame retardant and mechanically strengthened. Macromol. Mater. Eng. 304, 1900179 (2019).

    Google Scholar 

  193. Carosio, F. & Alongi, J. Flame retardant multilayered coatings on acrylic fabrics prepared by one-step deposition of chitosan/montmorillonite complexes. Fibers 6, 36 (2018).

    Google Scholar 

  194. Schulz, W. G. California revises furniture fire safety standards. C&EN https://cen.acs.org/articles/91/web/2013/11/California-Revises-Furniture-Fire-Safety.html (2013).

  195. Evarts, B. Fire Loss in the United States During 2017 (National Fire Protection Agency, 2018).

  196. Schartel, B. & Hull, T. R. Development of fire-retarded materials—interpretation of cone calorimeter data. Fire Mater. 31, 327–354 (2007).

    CAS  Google Scholar 

  197. Huggett, C. Estimation of rate of heat release by means of oxygen consumption measurements. Fire Mater. 4, 61–65 (1980).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the worldwide flame retardant scientific community that provided much of the content herein.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of content and edited the manuscript before submission.

Corresponding author

Correspondence to Jaime C. Grunlan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Chemical Watch: https://chemicalwatch.com/58037/maine-bans-all-flame-retardants-in-upholstered-furniture

Outright bans on flame retardants: https://chemicalwatch.com/58037/maine-bans-all-flame-retardants-in-upholstered-furniture

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazar, S.T., Kolibaba, T.J. & Grunlan, J.C. Flame-retardant surface treatments. Nat Rev Mater 5, 259–275 (2020). https://doi.org/10.1038/s41578-019-0164-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-019-0164-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing