Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure-guided development of YEATS domain inhibitors by targeting π-π-π stacking

Abstract

Chemical probes of epigenetic ‘readers’ of histone post-translational modifications (PTMs) have become powerful tools for mechanistic and functional studies of their target proteins in normal physiology and disease pathogenesis. Here we report the development of the first class of chemical probes of YEATS domains, newly identified ‘readers’ of histone lysine acetylation (Kac) and crotonylation (Kcr). Guided by the structural analysis of a YEATS–Kcr complex, we developed a series of peptide-based inhibitors of YEATS domains by targeting a unique π-π-π stacking interaction at the proteins’ Kcr recognition site. Further structure optimization resulted in the selective inhibitors preferentially binding to individual YEATS-containing proteins including AF9 and ENL with submicromolar affinities. We demonstrate that one of the ENL YEATS-selective inhibitors, XL-13m, engages with endogenous ENL, perturbs the recruitment of ENL onto chromatin, and synergizes the BET and DOT1L inhibition-induced downregulation of oncogenes in MLL-rearranged acute leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Targeting the π-π-π stacking for YEATS inhibition.
Fig. 2: Characterization and optimization of inhibitory effects.
Fig. 3: Molecular basis underlying the AF9 YEATS and XL-07i interaction.
Fig. 4: Development of ENL YEATS-selective inhibitors.
Fig. 5: Selective engagement of XL-13m with endogenous ENL.
Fig. 6: XL-13m perturbs ENL–chromatin interaction and synergizes with BET and DOT1L inhibition.

Similar content being viewed by others

Data availability

Crystal structure data of AF9 YEATS domain bound to inhibitor XL-07i has been deposited in the Protein Data Bank (PDB) under accession code 5YYF. Other data support the findings of this study are included in the article and/or the associated supplementary files, or available from the corresponding authors upon reasonable request.

References

  1. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  Google Scholar 

  2. Kouzarides, T. SnapShot: histone-modifying enzymes. Cell 131, 822 (2007).

    Article  CAS  Google Scholar 

  3. Patel, D. J. & Wang, Z. Readout of epigenetic modifications. Annu. Rev. Biochem. 82, 81–118 (2013).

    Article  CAS  Google Scholar 

  4. Musselman, C. A., Lalonde, M. E., Côté, J. & Kutateladze, T. G. Perceiving the epigenetic landscape through histone readers. Nat. Struct. Mol. Biol. 19, 1218–1227 (2012).

    Article  CAS  Google Scholar 

  5. Taverna, S. D., Li, H., Ruthenburg, A. J., Allis, C. D. & Patel, D. J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14, 1025–1040 (2007).

    Article  CAS  Google Scholar 

  6. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  Google Scholar 

  7. Suganuma, T. & Workman, J. L. Signals and combinatorial functions of histone modifications. Annu. Rev. Biochem. 80, 473–499 (2011).

    Article  CAS  Google Scholar 

  8. Chi, P., Allis, C. D. & Wang, G. G. Covalent histone modifications—miswritten, misinterpreted and mis-erased in human cancers. Nat. Rev. Cancer 10, 457–469 (2010).

    Article  CAS  Google Scholar 

  9. Bhaumik, S. R., Smith, E. & Shilatifard, A. Covalent modifications of histones during development and disease pathogenesis. Nat. Struct. Mol. Biol. 14, 1008–1016 (2007).

    Article  CAS  Google Scholar 

  10. Arrowsmith, C. H., Bountra, C., Fish, P. V., Lee, K. & Schapira, M. Epigenetic protein families: a new frontier for drug discovery. Nat. Rev. Drug. Discov. 11, 384–400 (2012).

    Article  CAS  Google Scholar 

  11. Helin, K. & Dhanak, D. Chromatin proteins and modifications as drug targets. Nature 502, 480–488 (2013).

    Article  CAS  Google Scholar 

  12. Cole, P. A. Chemical probes for histone-modifying enzymes. Nat. Chem. Biol. 4, 590–597 (2008).

    Article  CAS  Google Scholar 

  13. Wagner, J. M., Hackanson, B., Lübbert, M. & Jung, M. Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin. Epigenetics 1, 117–136 (2010).

    Article  CAS  Google Scholar 

  14. Marmorstein, R. & Zhou, M. M. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb. Perspect. Biol. 6, a018762 (2014).

    Article  Google Scholar 

  15. Filippakopoulos, P. & Knapp, S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat. Rev. Drug. Discov. 13, 337–356 (2014).

    Article  CAS  Google Scholar 

  16. Shortt, J., Ott, C. J., Johnstone, R. W. & Bradner, J. E. A chemical probe toolbox for dissecting the cancer epigenome. Nat. Rev. Cancer 17, 160–183 (2017).

    Article  CAS  Google Scholar 

  17. Li, Y. et al. AF9 YEATS domain links histone acetylation to DOT1L-mediated H3K79 methylation. Cell 159, 558–571 (2014).

    Article  CAS  Google Scholar 

  18. Zhao, D., Li, Y., Xiong, X., Chen, Z. & Li, H. YEATS Domain-A histone acylation reader in health and disease. J. Mol. Biol. 429, 1994–2002 (2017).

    Article  CAS  Google Scholar 

  19. Schulze, J. M., Wang, A. Y. & Kobor, M. S. YEATS domain proteins: a diverse family with many links to chromatin modification and transcription. Biochem. Cell. Biol. 87, 65–75 (2009).

    Article  CAS  Google Scholar 

  20. Li, Y. et al. Molecular coupling of histone crotonylation and active transcription by AF9 YEATS domain. Mol. Cell 62, 181–193 (2016).

    Article  CAS  Google Scholar 

  21. Andrews, F. H. et al. The Taf14 YEATS domain is a reader of histone crotonylation. Nat. Chem. Biol. 12, 396–398 (2016).

    Article  CAS  Google Scholar 

  22. Zhao, D. et al. YEATS2 is a selective histone crotonylation reader. Cell Res. 26, 629–632 (2016).

    Article  CAS  Google Scholar 

  23. Zhang, Q. et al. Structural insights into histone crotonyl-lysine recognition by the AF9 YEATS domain. Structure 24, 1606–1612 (2016).

    Article  Google Scholar 

  24. Wan, L. et al. ENL links histone acetylation to oncogenic gene expression in acute myeloid leukaemia. Nature 543, 265–269 (2017).

    Article  CAS  Google Scholar 

  25. Erb, M. A. et al. Transcription control by the ENL YEATS domain in acute leukaemia. Nature 543, 270–274 (2017).

    Article  CAS  Google Scholar 

  26. Mi, W. et al. YEATS2 links histone acetylation to tumorigenesis of non-small cell lung cancer. Nat. Commun. 8, 1088 (2017).

    Article  Google Scholar 

  27. Li, Y., Zhao, D., Chen, Z. & Li, H. YEATS domain: linking histone crotonylation to gene regulation. Transcription 8, 9–14 (2017).

    Article  CAS  Google Scholar 

  28. Niphakis, M. J. & Cravatt, B. F. Enzyme inhibitor discovery by activity-based protein profiling. Annu. Rev. Biochem. 83, 341–377 (2014).

    Article  CAS  Google Scholar 

  29. Li, X. & Kapoor, T. M. Approach to profile proteins that recognize post-translationally modified histone “tails”. J. Am. Chem. Soc. 132, 2504–2505 (2010).

    Article  CAS  Google Scholar 

  30. Yang, T., Liu, Z. & Li, X. D. Developing diazirine-based chemical probes to identify histone modification ‘readers’ and ‘erasers’. Chem. Sci. 6, 1011–1017 (2015).

    Article  CAS  Google Scholar 

  31. Jafari, R. et al. The cellular thermal shift assay for evaluating drug target interactions in cells. Nat. Protoc. 9, 2100–2122 (2014).

    Article  CAS  Google Scholar 

  32. Martinez Molina, D. & Nordlund, P. The cellular thermal shift assay: a novel biophysical assay for in situ drug target engagement and mechanistic biomarker studies. Annu. Rev. Pharmacol. Toxicol. 56, 141–161 (2016).

    Article  CAS  Google Scholar 

  33. Jang, M. K. et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell 19, 523–534 (2005).

    Article  CAS  Google Scholar 

  34. Basheer, F. & Huntly, B. J. P. BET bromodomain inhibitors in leukemia. Exp. Hematol. 43, 718–731 (2015).

    Article  CAS  Google Scholar 

  35. Fierz, B. & Muir, T. W. Chromatin as an expansive canvas for chemical biology. Nat. Chem. Biol. 8, 417–427 (2012).

    Article  CAS  Google Scholar 

  36. Huston, A., Arrowsmith, C. H., Knapp, S. & Schapira, M. Probing the epigenome. Nat. Chem. Biol. 11, 542–545 (2015).

    Article  CAS  Google Scholar 

  37. McGaughey, G. B., Gagné, M. & Rappé, A. K. pi-Stacking interactions. Alive and well in proteins. J. Biol. Chem. 273, 15458–15463 (1998).

    Article  CAS  Google Scholar 

  38. Cho, K. I., Kim, D. & Lee, D. A feature-based approach to modeling protein-protein interaction hot spots. Nucleic Acids Res. 37, 2672–2687 (2009).

    Article  CAS  Google Scholar 

  39. Perlman, E. J. et al. MLLT1 YEATS domain mutations in clinically distinctive favourable histology Wilms tumours. Nat. Commun. 6, 10013 (2015).

    Article  CAS  Google Scholar 

  40. Suganuma, T. & Workman, J. L. Crosstalk among histone modifications. Cell 135, 604–607 (2008).

    Article  CAS  Google Scholar 

  41. Lee, J. S., Smith, E. & Shilatifard, A. The language of histone crosstalk. Cell 142, 682–685 (2010).

    Article  CAS  Google Scholar 

  42. Leach, B. I. et al. Leukemia fusion target AF9 is an intrinsically disordered transcriptional regulator that recruits multiple partners via coupled folding and binding. Structure 21, 176–183 (2013).

    Article  CAS  Google Scholar 

  43. Kerry, J. et al. MLL-AF4 Spreading identifies binding sites that are distinct from super-enhancers and that govern sensitivity to DOT1L inhibition in leukemia. Cell Rep. 18, 482–495 (2017).

    Article  CAS  Google Scholar 

  44. Kuntimaddi, A. et al. Degree of recruitment of DOT1L to MLL-AF9 defines level of H3K79 di- and tri-methylation on target genes and transformation potential. Cell Rep. 11, 808–820 (2015).

    Article  CAS  Google Scholar 

  45. Gilan, O. et al. Functional interdependence of BRD4 and DOT1L in MLL leukemia. Nat. Struct. Mol. Biol. 23, 673–681 (2016).

    Article  CAS  Google Scholar 

  46. Bruce, V. J. & McNaughton, B. R. Inside job: methods for delivering proteins to the interior of mammalian cells. Cell Chem. Biol. 24, 924–934 (2017).

    Article  CAS  Google Scholar 

  47. Luo, Z., Lin, C. & Shilatifard, A. The super elongation complex (SEC) family in transcriptional control. Nat. Rev. Mol. Cell Biol. 13, 543–547 (2012).

    Article  CAS  Google Scholar 

  48. He, N. et al. Human polymerase-associated factor complex (PAFc) connects the super elongation complex (SEC) to RNA polymerase II on chromatin. Proc. Natl. Acad. Sci. USA 108, E636–E645 (2011).

    Article  CAS  Google Scholar 

  49. Gates, L. A. et al. Acetylation on histone H3 lysine 9 mediates a switch from transcription initiation to elongation. J. Biol. Chem. 292, 14456–14472 (2017).

    Article  CAS  Google Scholar 

  50. Li, X. et al. Quantitative chemical proteomics approach to identify post-translational modification-mediated protein-protein interactions. J. Am. Chem. Soc. 134, 1982–1985 (2012).

    Article  CAS  Google Scholar 

  51. Bao, X. et al. Identification of ‘erasers’ for lysine crotonylated histone marks using a chemical proteomics approach. eLife 3, e02999 (2014).

    Article  Google Scholar 

  52. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  53. Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D. Biol. Crystallogr. 66, 22–25 (2010).

    Article  CAS  Google Scholar 

  54. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  55. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Hong Kong Research Grants Council Collaborative Research Fund (CRF C7029-15G to X.D.L.), the Areas of Excellence Scheme (AoE/P-705/16 to X.D.L.), the General Research Fund (GRF 17126618, 17125917 and 17303114 to X.D.L.), and the Early Career Scheme (ECS; HKU 709813P to X.D.L.). We acknowledge the National Natural Science Foundation of China (21572191 and 91753130 to X.D.L and 31725014 to H.L.), National Key R&D Program of China (2016YFA0500700 to H.L.), National Institutes of Health (1R01CA204639-01 to C.D.A.), the Leukemia and Lymphoma Society (LLS-SCOR 7006-13 to C.D.A), and funds from The Rockefeller University (to C.D.A.). Y.L. is a Tsinghua Advanced Fellow. L.W. is a fellow of the Jane Coffin Childs Memorial Fund. We acknowledge support from Beijing Metropolis for the Beijing Novo Program (Z181100006218068 to Y.L.) and China Association for Science and Technology for the Young Elite Scientists Sponsorship Program (to Y.L.). We thank the staff members at beamline BL17U1 the Shanghai Synchrotron Radiation Facility and S. Fan at Tsinghua Center for Structural Biology for their assistance in data collection and the China National Center for Protein Sciences Beijing for providing facility support. We thank H. Sun at Department of Chemistry, City University of Hong Kong for providing plasmid of the second BrD of BRD4. We thank A.Y.-H. Leung at Department of Medicine, the University of Hong Kong for providing the MV4;11 cell line.

Author information

Authors and Affiliations

Authors

Contributions

X.D.L. conceived the research project. X.L., X.-M.L., H.L., Y.L., and X.D.L. designed the experiments and analyzed the data. X.L., Y.J., Z.L., K.Y.F., and S.H.E.v.d.B. carried out the small-molecule and peptide synthesis. X.L., Y.C., Z.L., G.T., and Y.L. expressed and purified the proteins. X.L. performed the in vitro competition assay and ITC experiments. Y.L. and H.L. resolved the crystal structure and performed in silico modeling studies. X.-M.L. carried out the CETSA, ChIP-qPCR, and RT-qPCR experiments. L.W., C.D.A, and X.S. provided discussions and unpublished preliminary data. H.L. and X.D.L. supervised the work in their respective fields. X.L., Y.L. and X.D.L. wrote the manuscript with inputs from X.-M.L. and H.L.

Corresponding authors

Correspondence to Yuanyuan Li or Xiang David Li.

Ethics declarations

Competing interests

X.L. and X.D.L. have filed a patent application (US Provisional Application No. 62/590,690) related to the peptide-based inhibitors reported in this manuscript.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–2, Supplementary Figures 1–12

Reporting Summary

Supplementary Note

Synthetic Procedures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, XM., Jiang, Y. et al. Structure-guided development of YEATS domain inhibitors by targeting π-π-π stacking. Nat Chem Biol 14, 1140–1149 (2018). https://doi.org/10.1038/s41589-018-0144-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0144-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer