Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A chemical–genetic screen identifies ABHD12 as an oxidized-phosphatidylserine lipase

Abstract

Reactive oxygen species (ROS) are transient, highly reactive intermediates or byproducts produced during oxygen metabolism. However, when innate mechanisms are unable to cope with sequestration of surplus ROS, oxidative stress results, in which excess ROS damage biomolecules. Oxidized phosphatidylserine (PS), a proapoptotic ‘eat me’ signal, is produced in response to elevated ROS, yet little is known regarding its chemical composition and metabolism. Here, we report a small molecule that generates ROS in different mammalian cells. We used this molecule to detect, characterize and study oxidized PS in mammalian cells. We developed a chemical–genetic screen to identify enzymes that regulate oxidized PS in mammalian cells and found that the lipase ABHD12 hydrolyzes oxidized PS. We validated these findings in different physiological settings including primary peritoneal macrophages and brains from Abhd12–/– mice under inflammatory stress, and in the process, we functionally annotated an enzyme regulating oxidized PS in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of a ROS-generating probe (MGR1), and an inactive control probe (MGR2).
Fig. 2: Characterization and quantification of oxidized PS in mammalian cells after MGR1 treatment.
Fig. 3: Chemical–genetic screen to identify oxidized-PS lipases in mammalian cells.
Fig. 4: Biological validation of human ABHD12 as an oxidized-PS lipase.
Fig. 5: ABHD12 functions as an oxidized-PS lipase in vivo.

Similar content being viewed by others

Data availability

The authors declare that all the data that support the findings of this study are available in the paper, associated supplementary information files and datasets.

References

  1. Aruoma, O. I. Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil. Chem. Soc. 75, 199–212 (1998).

    Article  CAS  Google Scholar 

  2. Niedzielska, E. et al. Oxidative stress in neurodegenerative diseases. Mol. Neurobiol. 53, 4094–4125 (2016).

    Article  CAS  Google Scholar 

  3. Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247 (2000).

    Article  CAS  Google Scholar 

  4. Liou, G. Y. & Storz, P. Reactive oxygen species in cancer. Free. Radic. Res. 44, 479–496 (2010).

    Article  CAS  Google Scholar 

  5. Imlay, J. A. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat. Rev. Microbiol. 11, 443–454 (2013).

    Article  CAS  Google Scholar 

  6. Porter, N. A. A perspective on free radical autoxidation: the physical organic chemistry of polyunsaturated fatty acid and sterol peroxidation. J. Org. Chem. 78, 3511–3524 (2013).

    Article  CAS  Google Scholar 

  7. Yin, H., Xu, L. & Porter, N. A. Free radical lipid peroxidation: mechanisms and analysis. Chem. Rev. 111, 5944–5972 (2011).

    Article  CAS  Google Scholar 

  8. Spickett, C. M. & Pitt, A. R. Oxidative lipidomics coming of age: advances in analysis of oxidized phospholipids in physiology and pathology. Antioxid. Redox. Signal. 22, 1646–1666 (2015).

    Article  CAS  Google Scholar 

  9. Smith, W. L. & Murphy, R. C. Oxidized lipids formed non-enzymatically by reactive oxygen species. J. Biol. Chem. 283, 15513–15514 (2008).

    Article  CAS  Google Scholar 

  10. Vance, J. E. & Tasseva, G. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim. Biophys. Acta 1831, 543–554 (2013).

    Article  CAS  Google Scholar 

  11. Leventis, P. A. & Grinstein, S. The distribution and function of phosphatidylserine in cellular membranes. Annu. Rev. Biophys. 39, 407–427 (2010).

    Article  CAS  Google Scholar 

  12. Hazen, S. L. Oxidized phospholipids as endogenous pattern recognition ligands in innate immunity. J. Biol. Chem. 283, 15527–15531 (2008).

    Article  CAS  Google Scholar 

  13. Greenberg, M. E. et al. Oxidized phosphatidylserine-CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. J. Exp. Med. 203, 2613–2625 (2006).

    Article  CAS  Google Scholar 

  14. Kagan, V. E. et al. A role for oxidative stress in apoptosis: oxidation and externalization of phosphatidylserine is required for macrophage clearance of cells undergoing Fas-mediated apoptosis. J. Immunol. 169, 487–499 (2002).

    Article  CAS  Google Scholar 

  15. Fiskerstrand, T. et al. Mutations in ABHD12 cause the neurodegenerative disease PHARC: an inborn error of endocannabinoid metabolism. Am. J. Hum. Genet. 87, 410–417 (2010).

    Article  CAS  Google Scholar 

  16. Chen, D. H. et al. Two novel mutations in ABHD12: expansion of the mutation spectrum in PHARC and assessment of their functional effects. Hum. Mutat. 34, 1672–1678 (2013).

    Article  Google Scholar 

  17. Dharmaraja, A. T. & Chakrapani, H. A small molecule for controlled generation of reactive oxygen species (ROS). Org. Lett. 16, 398–401 (2014).

    Article  CAS  Google Scholar 

  18. Dharmaraja, A. T., Alvala, M., Sriram, D., Yogeeswari, P. & Chakrapani, H. Design, synthesis and evaluation of small molecule reactive oxygen species generators as selective Mycobacterium tuberculosis inhibitors. Chem. Commun. (Camb). 48, 10325–10327 (2012).

    Article  CAS  Google Scholar 

  19. Tyagi, P., Dharmaraja, A. T., Bhaskar, A., Chakrapani, H. & Singh, A. Mycobacterium tuberculosis has diminished capacity to counteract redox stress induced by elevated levels of endogenous superoxide. Free Radic. Biol. Med. 84, 344–354 (2015).

    Article  CAS  Google Scholar 

  20. Long, J. Z. & Cravatt, B. F. The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chem. Rev. 111, 6022–6063 (2011).

    Article  CAS  Google Scholar 

  21. Huu, T. P., Marquetty, C., Pasquier, C. & Hakim, J. Luminol assay for microdetermination of superoxide dismutase activity: its application to human fetal blood. Anal. Biochem. 142, 467–472 (1984).

    Article  CAS  Google Scholar 

  22. Zhao, H. et al. Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Proc. Natl. Acad. Sci. USA 102, 5727–5732 (2005).

    Article  CAS  Google Scholar 

  23. McCormack, D. & McFadden, D. A review of pterostilbene antioxidant activity and disease modification. Oxid. Med. Cell Longev. 2013, 575482 (2013).

    Article  Google Scholar 

  24. Kerksick, C. & Willoughby, D. The antioxidant role of glutathione and N-acetyl-cysteine supplements and exercise-induced oxidative stress. J. Int. Soc. Sports. Nutr. 2, 38–44 (2005).

    Article  Google Scholar 

  25. Liebeke, M. et al. Depletion of thiol-containing proteins in response to quinones in Bacillus subtilis. Mol. Microbiol. 69, 1513–1529 (2008).

    Article  CAS  Google Scholar 

  26. O’Brien, P. J. Molecular mechanisms of quinone cytotoxicity. Chem. Biol. Interact. 80, 1–41 (1991).

    Article  Google Scholar 

  27. Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).

    Article  CAS  Google Scholar 

  28. Speers, A. E., Adam, G. C. & Cravatt, B. F. Activity-based protein profiling in vivo using a copper(i)-catalyzed azide-alkyne [3+2] cycloaddition. J. Am. Chem. Soc. 125, 4686–4687 (2003).

    Article  CAS  Google Scholar 

  29. Zschörnig, K. & Schiller, J. A simple method to generate oxidized phosphatidylcholines in amounts close to one milligram. Chem. Phys. Lipids 184, 30–37 (2014).

    Article  Google Scholar 

  30. Pathak, D., Mehendale, N., Singh, S., Mallik, R. & Kamat, S. S. Lipidomics suggests a new role for ceramide synthase in phagocytosis. ACS Chem. Biol. 13, 2280–2287 (2018).

    Article  CAS  Google Scholar 

  31. Knittelfelder, O. L. & Kohlwein, S. D. Thin-layer chromatography to separate phospholipids and neutral lipids from yeast. Cold Spring Harb. Protoc. 2017, pdb.prot085456 (2017).

    Article  Google Scholar 

  32. Kamat, S. S. et al. Immunomodulatory lysophosphatidylserines are regulated by ABHD16A and ABHD12 interplay. Nat. Chem. Biol. 11, 164–171 (2015).

    Article  CAS  Google Scholar 

  33. Nomura, D. K. & Casida, J. E. Lipases and their inhibitors in health and disease. Chem. Biol. Interact. 259, 211–222 (2016).

    Article  CAS  Google Scholar 

  34. Wu, C., Jin, X., Tsueng, G., Afrasiabi, C. & Su, A. I. BioGPS: building your own mash-up of gene annotations and expression profiles. Nucleic Acids Res. 44, D313–D316 (2016).

    Article  CAS  Google Scholar 

  35. Hoover, H. S., Blankman, J. L., Niessen, S. & Cravatt, B. F. Selectivity of inhibitors of endocannabinoid biosynthesis evaluated by activity-based protein profiling. Bioorg. Med. Chem. Lett. 18, 5838–5841 (2008).

    Article  CAS  Google Scholar 

  36. Liu, Y., Patricelli, M. P. & Cravatt, B. F. Activity-based protein profiling: the serine hydrolases. Proc. Natl. Acad. Sci. USA 96, 14694–14699 (1999).

    Article  CAS  Google Scholar 

  37. Long, J. Z. et al. Metabolomics annotates ABHD3 as a physiologic regulator of medium-chain phospholipids. Nat. Chem. Biol. 7, 763–765 (2011).

    Article  CAS  Google Scholar 

  38. Ramanadham, S. et al. Calcium-independent phospholipases A2 and their roles in biological processes and diseases. J. Lipid Res. 56, 1643–1668 (2015).

    Article  CAS  Google Scholar 

  39. Blankman, J. L., Long, J. Z., Trauger, S. A., Siuzdak, G. & Cravatt, B. F. ABHD12 controls brain lysophosphatidylserine pathways that are deregulated in a murine model of the neurodegenerative disease PHARC. Proc. Natl. Acad. Sci. USA 110, 1500–1505 (2013).

    Article  CAS  Google Scholar 

  40. Hsu, H. Y. & Wen, M. H. Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression. J. Biol. Chem. 277, 22131–22139 (2002).

    Article  CAS  Google Scholar 

  41. Viader, A. et al. A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation. eLife 5, e12345 (2016).

    Article  Google Scholar 

  42. You, L. H. et al. Astrocyte hepcidin is a key factor in LPS-induced neuronal apoptosis. Cell Death Dis. 16, e2676 (2017).

    Article  Google Scholar 

  43. Hou, C. et al. Development of a positron emission tomography radiotracer for imaging elevated levels of superoxide in neuroinflammation. ACS Chem. Neurosci. 9, 578–586 (2018).

    Article  CAS  Google Scholar 

  44. Matsura, T. et al. The presence of oxidized phosphatidylserine on Fas-mediated apoptotic cell surface. Biochim. Biophys. Acta 1736, 181–188 (2005).

    Article  CAS  Google Scholar 

  45. Joshi, A. et al. Biochemical characterization of the PHARC-associated serine hydrolase ABHD12 reveals its preference for very-long-chain lipids. J. Biol. Chem. 293, 16953–16963 (2018).

    Article  CAS  Google Scholar 

  46. Blankman, J. L., Simon, G. M. & Cravatt, B. F. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem. Biol. 14, 1347–1356 (2007).

    Article  CAS  Google Scholar 

  47. Niphakis, M. J. et al. A global map of lipid-binding proteins and their ligandability in cells. Cell 161, 1668–1680 (2015).

    Article  CAS  Google Scholar 

  48. Hulce, J. J., Cognetta, A. B., Niphakis, M. J., Tully, S. E. & Cravatt, B. F. Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells. Nat. Methods 10, 259–264 (2013).

    Article  Google Scholar 

  49. Rosenson, R. S. & Stafforini, D. M. Modulation of oxidative stress, inflammation, and atherosclerosis by lipoprotein-associated phospholipase A2. J. Lipid Res. 53, 1767–1782 (2012).

    Article  CAS  Google Scholar 

  50. Shimanaka, Y. et al. Omega-3 fatty acid epoxides are autocrine mediators that control the magnitude of IgE-mediated mast cell activation. Nat. Med. 23, 1287–1297 (2017).

    CAS  PubMed  Google Scholar 

  51. Folch, J., Lees, M. & Sloane Stanley, G. H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957).

    CAS  PubMed  Google Scholar 

  52. Simon, G. M. & Cravatt, B. F. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study. J. Biol. Chem. 285, 11051–11055 (2010).

    Article  CAS  Google Scholar 

  53. Inloes, J. M. et al. The hereditary spastic paraplegia-related enzyme DDHD2 is a principal brain triglyceride lipase. Proc. Natl. Acad. Sci. USA 111, 14924–14929 (2014).

    Article  CAS  Google Scholar 

  54. Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics with StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    Article  CAS  Google Scholar 

  55. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  Google Scholar 

  56. Fahy, E., Sud, M., Cotter, D. & Subramaniam, S. LIPID MAPS online tools for lipid research. Nucleic Acids Res. 35, W606–W612 (2007).

    Article  Google Scholar 

  57. Hsu, K. L. et al. DAGLβ inhibition perturbs a lipid network involved in macrophage inflammatory responses. Nat. Chem. Biol. 8, 999–1007 (2012).

    Article  CAS  Google Scholar 

  58. Nomura, D. K. et al. Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science 334, 809–813 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Wellcome Trust DBT India Alliance (IA/I/15/2/502058 to S.S.K.), DST-SERB (ECR/2016/001261 to S.S.K.; EMR/2015/000668 to H.C.), DBT (BT/PR15848/MED/29/1025/2016 to H.C.) and DST-FIST (Infrastructure Development to IISER Pune Biology Department). B. F. Cravatt (The Scripps Research Institute) is thanked for providing chemical compounds, inhibitors and ABHD12-knockout mice used in this study, and for insightful comments on the manuscript. N. Balasubramanian (IISER Pune) is thanked for access to the EVOS Imaging System for the cellular fluorescence experiments. The National Facility for Gene Function in Health and Disease, IISER Pune, is thanked for maintaining and providing mice for this study. G.R., A.K.S. and A.R. acknowledge research fellowships from the Council for Scientific and Industrial Research (CSIR), Government of India, and N.M. acknowledges a research fellowship from DBT, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

D.S.K., N.M., S.S., A.J., A.R. and S.S.K. performed the biochemical experiments and analyzed the data. G.R., A.K.S., A.M. and H.C. synthesized and chemically characterized all the chemical compounds in this study. D.S.K. and S.S.K. performed and analyzed the proteomics data. S.S.K. and H.C. conceived the project and designed the experiments. S.S.K. wrote the paper, to which all authors provided input.

Corresponding author

Correspondence to Siddhesh S. Kamat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–26

Reporting Summary

Supplementary Note

Synthetic procedures

Supplementary Dataset 1

LC-MS/MS based chemoproteomic characterization

Supplementary Dataset 2

MRM transitions and quantitation of PS, lyso-PS and oxidized PS lipids

Supplementary Dataset 3

Highly focused library of lipase inhibitors tested in the chemical genetic screen

Supplementary Dataset 4

Complete proteomics data sets from RAW264.7 cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelkar, D.S., Ravikumar, G., Mehendale, N. et al. A chemical–genetic screen identifies ABHD12 as an oxidized-phosphatidylserine lipase. Nat Chem Biol 15, 169–178 (2019). https://doi.org/10.1038/s41589-018-0195-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0195-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing