Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sexually dimorphic behavior, neuronal activity, and gene expression in Chd8-mutant mice

Abstract

Autism spectrum disorders (ASDs) are four times more common in males than in females, but the underlying mechanisms are poorly understood. We characterized sexually dimorphic changes in mice carrying a heterozygous mutation in Chd8 (Chd8+/N2373K) that was first identified in human CHD8 (Asn2373LysfsX2), a strong ASD-risk gene that encodes a chromatin remodeler. Notably, although male mutant mice displayed a range of abnormal behaviors during pup, juvenile, and adult stages, including enhanced mother-seeking ultrasonic vocalization, enhanced attachment to reunited mothers, and isolation-induced self-grooming, their female counterparts do not. This behavioral divergence was associated with sexually dimorphic changes in neuronal activity, synaptic transmission, and transcriptomic profiles. Specifically, female mice displayed suppressed baseline neuronal excitation, enhanced inhibitory synaptic transmission and neuronal firing, and increased expression of genes associated with extracellular vesicles and the extracellular matrix. Our results suggest that a human CHD8 mutation leads to sexually dimorphic changes ranging from transcription to behavior in mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chd8+/N2373K mice display male-preponderant autistic-like behaviors.
Fig. 2: Distinct c-fos signals in male and female Chd8+/N2373K brains under baseline and maternal-separation conditions.
Fig. 3: Opposite changes in inhibitory synaptic transmission in the hippocampus of male and female Chd8+/N2373K mice.
Fig. 4: Opposite changes in excitatory and inhibitory neuronal firing in the hippocampus of male and female Chd8+/N2373K mice.
Fig. 5: Distinct transcriptomic patterns in male and female Chd8+/N2373K mice revealed by DEG analyses.
Fig. 6: Distinct enrichments of genes from male and female Chd8+/N2373K mice for ASD-related and cell-type-specific gene sets, as revealed by GSEA.

Similar content being viewed by others

References

  1. Elsabbagh, M. et al. Global prevalence of autism and other pervasive developmental disorders. Autism Res. 5, 160–179 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Südhof, T. C. Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455, 903–911 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zoghbi, H. Y. & Bear, M. F. Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb. Perspect. Biol. 4, a009886 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jiang, Y. H. & Ehlers, M. D. Modeling autism by SHANK gene mutations in mice. Neuron 78, 8–27 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bourgeron, T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat. Rev. Neurosci. 16, 551–563 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. de la Torre-Ubieta, L., Won, H., Stein, J. L. & Geschwind, D. H. Advancing the understanding of autism disease mechanisms through genetics. Nat. Med. 22, 345–361 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Krumm, N., O’Roak, B. J., Shendure, J. & Eichler, E. E. A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci. 37, 95–105 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Ronemus, M., Iossifov, I., Levy, D. & Wigler, M. The role of de novo mutations in the genetics of autism spectrum disorders. Nat. Rev. Genet. 15, 133–141 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Werling, D. M., Parikshak, N. N. & Geschwind, D. H. Gene expression in human brain implicates sexually dimorphic pathways in autism spectrum disorders. Nat. Commun. 7, 10717 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Werling, D. M. & Geschwind, D. H. Recurrence rates provide evidence for sex-differential, familial genetic liability for autism spectrum disorders in multiplex families and twins. Mol. Autism 6, 27 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Werling, D. M., Lowe, J. K., Luo, R., Cantor, R. M. & Geschwind, D. H. Replication of linkage at chromosome 20p13 and identification of suggestive sex-differential risk loci for autism spectrum disorder. Mol. Autism 5, 13 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Werling, D. M. & Geschwind, D. H. Sex differences in autism spectrum disorders. Curr. Opin. Neurol. 26, 146–153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Werling, D. M. & Geschwind, D. H. Understanding sex bias in autism spectrum disorder. Proc. Natl Acad. Sci. USA 110, 4868–4869 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Robinson, E. B., Lichtenstein, P., Anckarsäter, H., Happé, F. & Ronald, A. Examining and interpreting the female protective effect against autistic behavior. Proc. Natl Acad. Sci. USA 110, 5258–5262 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu, A. T. & Cantor, R. M. Allowing for sex differences increases power in a GWAS of multiplex Autism families. Mol. Psychiatry 17, 215–222 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Sato, D. et al. SHANK1 deletions in males with autism spectrum disorder. Am. J. Hum. Genet. 90, 879–887 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lo, S. C., Scearce-Levie, K. & Sheng, M. Characterization of social behaviors in caspase-3 deficient mice. Sci. Rep. 6, 18335 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barak, B. & Feng, G. Neurobiology of social behavior abnormalities in autism and Williams syndrome. Nat. Neurosci. 19, 647–655 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sakamoto, I. et al. A novel beta-catenin-binding protein inhibits beta-catenin-dependent Tcf activation and axis formation. J. Biol. Chem. 275, 32871–32878 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Barnard, R. A., Pomaville, M. B. & O’Roak, B. J. Mutations and modeling of the chromatin remodeler CHD8 define an emerging autism etiology. Front. Neurosci. 9, 477 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sugathan, A. et al. CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors. Proc. Natl Acad. Sci. USA 111, E4468–E4477 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cotney, J. et al. The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment. Nat. Commun. 6, 6404 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Wilkinson, B. et al. The autism-associated gene chromodomain helicase DNA-binding protein 8 (CHD8) regulates noncoding RNAs and autism-related genes. Transl. Psychiatry 5, e568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Katayama, Y. et al. CHD8 haploinsufficiency results in autistic-like phenotypes in mice. Nature 537, 675–679 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Durak, O. et al. Chd8 mediates cortical neurogenesis via transcriptional regulation of cell cycle and Wnt signaling. Nat. Neurosci. 19, 1477–1488 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gompers, A. L. et al. Germline Chd8 haploinsufficiency alters brain development in mouse. Nat. Neurosci. 20, 1062–1073 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Platt, R. J. et al. Chd8 mutation leads to autistic-like behaviors and impaired striatal circuits. Cell Rep. 19, 335–350 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stessman, H. A. et al. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat. Genet. 49, 515–526 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nishiyama, M. et al. Early embryonic death in mice lacking the beta-catenin-binding protein Duplin. Mol. Cell. Biol. 24, 8386–8394 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Suetterlin, P. et al. Altered neocortical gene expression, brain overgrowth and functional over-connectivity in Chd8 haploinsufficient mice. Cereb. Cortex 28, 2192–2206 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bernier, R. et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell 158, 263–276 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. O’Roak, B. J. et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338, 1619–1622 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Merner, N. et al. A de novo frameshift mutation in chromodomain helicase DNA-binding domain 8 (CHD8): a case report and literature review. Am. J. Med. Genet. A. 170A, 1225–1235 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Colombo, M., Raposo, G. & Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Porro, C., Trotta, T. & Panaro, M. A. Microvesicles in the brain: biomarker, messenger or mediator? J. Neuroimmunol. 288, 70–78 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Serra-Millàs, M. Are the changes in the peripheral brain-derived neurotrophic factor levels due to platelet activation? World J. Psychiatry 6, 84–101 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Song, I. & Dityatev, A. Crosstalk between glia, extracellular matrix and neurons. Brain Res. Bull. 136, 101–108 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Frischknecht, R., Chang, K. J., Rasband, M. N. & Seidenbecher, C. I. Neural ECM molecules in axonal and synaptic homeostatic plasticity. Prog. Brain Res. 214, 81–100 (2014).

    Article  PubMed  Google Scholar 

  39. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Voineagu, I. et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474, 380–384 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. White, S. W., Oswald, D., Ollendick, T. & Scahill, L. Anxiety in children and adolescents with autism spectrum disorders. Clin. Psychol. Rev. 29, 216–229 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Selimbeyoglu, A. et al. Modulation of prefrontal cortex excitation/inhibition balance rescues social behavior in CNTNAP2-deficient mice. Sci. Transl. Med. 9, eaah6733 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cao, W. et al. Gamma oscillation dysfunction in mPFC leads to social deficits in Neuroligin 3 R451C knockin mice. Neuron 97, 1253–1260.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Risher, W. C. & Eroglu, C. Thrombospondins as key regulators of synaptogenesis in the central nervous system. Matrix Biol. 31, 170–177 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stryker, E. & Johnson, K. G. LAR, liprin alpha and the regulation of active zone morphogenesis. J. Cell Sci. 120, 3723–3728 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Zhao, X. et al. A unified genetic theory for sporadic and inherited autism. Proc. Natl Acad. Sci. USA 104, 12831–12836 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sanders, S. J. et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 87, 1215–1233 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jacquemont, S. et al. A higher mutational burden in females supports a ‘female protective model’ in neurodevelopmental disorders. Am. J. Hum. Genet. 94, 415–425 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mo, J. et al. Early growth response 1 (Egr-1) directly regulates GABAA receptor α2, α4, and θ subunits in the hippocampus. J. Neurochem. 133, 489–500 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Huttner, W. B., Schiebler, W., Greengard, P. & De Camilli, P. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J. Cell Biol. 96, 1374–1388 (1983).

    Article  CAS  PubMed  Google Scholar 

  53. Kim, M. H. et al. Enhanced NMDA receptor-mediated synaptic transmission, enhanced long-term potentiation, and impaired learning and memory in mice lacking IRSp53. J. Neurosci. 29, 1586–1595 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mok, H. et al. Association of the kinesin superfamily motor protein KIF1Balpha with postsynaptic density-95 (PSD-95), synapse-associated protein-97, and synaptic scaffolding molecule PSD-95/discs large/zona occludens-1 proteins. J. Neurosci. 22, 5253–5258 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lerch, J. P., Sled, J. G. & Henkelman, R. M. MRI phenotyping of genetically altered mice. Methods Mol. Biol. 711, 349–361 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Dorr, A. E., Lerch, J. P., Spring, S., Kabani, N. & Henkelman, R. M. High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J mice. Neuroimage 42, 60–69 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Steadman, P. E. et al. Genetic effects on cerebellar structure across mouse models of autism using a magnetic resonance imaging atlas. Autism Res. 7, 124–137 (2014).

    Article  PubMed  Google Scholar 

  58. Ullmann, J. F., Watson, C., Janke, A. L., Kurniawan, N. D. & Reutens, D. C. A segmentation protocol and MRI atlas of the C57BL/6J mouse neocortex. Neuroimage 78, 196–203 (2013).

    Article  PubMed  Google Scholar 

  59. Silverman, J. L., Yang, M., Lord, C. & Crawley, J. N. Behavioral phenotyping assays for mouse models of autism. Nat. Rev. Neurosci. 11, 490–502 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chung, W. et al. Social deficits in IRSp53 mutant mice improved by NMDAR and mGluR5 suppression. Nat. Neurosci. 18, 435–443 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Jamain, S. et al. Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proc. Natl Acad. Sci. USA 105, 1710–1715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. McFarlane, H. G. et al. Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav. 7, 152–163 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Long, J. M., LaPorte, P., Paylor, R. & Wynshaw-Boris, A. Expanded characterization of the social interaction abnormalities in mice lacking Dvl1. Genes Brain Behav. 3, 51–62 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Zhan, Y. et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat. Neurosci. 17, 400–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Deacon, R. M. Digging and marble burying in mice: simple methods for in vivo identification of biological impacts. Nat. Protoc. 1, 122–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Yang, M. & Crawley, J. N. Simple behavioral assessment of mouse olfaction. Curr. Protoc. Neurosci. 48, 8.24 (2009).

    Google Scholar 

  67. Clapcote, S.J. & Roder, J.C. Simplex PCR assay for sex determination in mice. Biotechniques https://doi.org/10.2144/05385BM05 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Anders, S., Pyl, P. T. & Huber, W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Razick, S., Magklaras, G. & Donaldson, I. M. iRefIndex: a consolidated protein interaction database with provenance. BMC Bioinformatics 9, 405 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shah, H. How to calculate the sample size for animal studies? Natl J. Physiol. Pharm. Pharmacol 1, 35–39 (2011).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the NRF Grant 2013M3C7A1056732 (to H.K.), the Future Systems Healthcare Project of KAIST (to S.P.), KISTI K-16-L03-C02-S01 (to H. Kang), and the Institute for Basic Science (IBS-R002-D1 to E.K.).

Author information

Authors and Affiliations

Authors

Contributions

W.M. designed the mouse knockout strategy. S.M. conducted in situ hybridization experiments. J.E. and J.P.L. performed MRI and DTI experiments and analysis. Y.C. and H. Kweon conducted immunohistochemistry experiments. Haram Park, H.J., Y.C., J.D.R., H. Kweon., C.C., S.H., T.Y., Hanwool Park, S.U., and S.K. conducted slice electrophysiology experiments. E.L., I.Y., W.C., and J.L. performed in vivo recording experiments and analysis. H.J., Haram Park, Y.C., J.K., M.B., S.C., S.K., Y. Kim., H. Kweon, and Y. Kwon conducted mouse behavioral experiments. Haram Park, H.J., H. Kweon, and Y.C. conducted all of the other experiments. H. Kang performed RNA transcript analysis. Y.C.B., H.K., S.P., and E.K. supervised the project and wrote the manuscript.

Corresponding author

Correspondence to Eunjoon Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Text and Figures

Supplementary Figures 1–21

Reporting Summary

Supplementary Table 1

Summary of MRI and DTI analysis of brains from male and female, WT and Chd8+/N2373K mice at 4 weeks.

Supplementary Table 2

Summary of c-fos expression analyses of brains from male and female, WT and Chd8+/N2373K mice at P20.

Supplementary Table 3

All RNA-Seq data from male and female, WT and Chd8+/N2373K mice at P0 and P25 and details on all HT/WT DEGs.

Supplementary Table 4

Full GO annotations for DEGs.

Supplementary Table 5

GSEA results for C5, ASD-related, cell type-specific, and IEG-related, C2, and C3 gene sets.

Supplementary Table 6

Statistical analyses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, H., Park, H., Choi, Y. et al. Sexually dimorphic behavior, neuronal activity, and gene expression in Chd8-mutant mice. Nat Neurosci 21, 1218–1228 (2018). https://doi.org/10.1038/s41593-018-0208-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-018-0208-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing