Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A tethered-inchworm model of SMC DNA translocation

Abstract

The DNA loop extrusion model is a provocative new concept explaining the formation of chromatin loops that revolutionizes understanding of genome organization. Central to this model is the structural maintenance of chromosomes (SMC) protein family, which is now thought to function as a DNA motor. In this Perspective, we review and reinterpret the current knowledge of SMC structure and function and propose a novel mechanism for SMC motor activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The loop extrusion model.
Fig. 2: The tethered-inchworm model.

Similar content being viewed by others

References

  1. Riggs, A. D. DNA methylation and late replication probably aid cell memory, and type I DNA reeling could aid chromosome folding and enhancer function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 326, 285–297 (1990).

    Article  CAS  Google Scholar 

  2. Nasmyth, K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35, 673–745 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Alipour, E. & Marko, J. F. Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res. 40, 11202–11212 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nichols, M. H. & Corces, V. G. A CTCF code for 3D genome architecture. Cell 162, 703–705 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl. Acad. Sci. USA 112, E6456–E6465 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Haarhuis, J. H. I. et al. The cohesin release factor WAPL restricts chromatin loop extension. Cell 169, 693–707 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wutz, G. et al. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J. 36, 3573–3599 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, X., Brandão, H. B., Le, T. B. K., Laub, M. T. & Rudner, D. Z. Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus. Science 355, 524–527 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barrington, C., Finn, R. & Hadjur, S. Cohesin biology meets the loop extrusion model. Chromosome Res. 25, 51–60 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Racko, D., Benedetti, F., Dorier, J. & Stasiak, A. Transcription-induced supercoiling as the driving force of chromatin loop extrusion during formation of TADs in interphase chromosomes. Nucleic Acids Res. 46, 1648–1660 (2018).

    Article  PubMed  Google Scholar 

  13. Yamamoto, T. & Schiessel, H. Osmotic mechanism of the loop extrusion process. Phys. Rev. E 96, 030402 (2017).

    Article  PubMed  Google Scholar 

  14. Brackley, C. A. et al. Extrusion without a motor: a new take on the loop extrusion model of genome organization. Nucleus 9, 95–103 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vian, L. et al. The energetics and physiological impact of cohesin extrusion. Cell 173, 1165–1178 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, X. et al. In vivo evidence for ATPase-dependent DNA translocation by the Bacillus subtilis SMC condensin complex. Mol. Cell https://doi.org/10.1016/j.molcel.2018.07.006 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Terakawa, T. et al. The condensin complex is a mechanochemical motor that translocates along DNA. Science 358, 672–676 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ganji, M. et al. Real-time imaging of DNA loop extrusion by condensin. Science 360, 102–105 (2018). This study directly imaged real-time unidirectional loop extrusion by single condensin complexes. This represents the strongest evidence to date that SMC complexes are DNA motors and provides important insights into the mechanism by which extrusion occurs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stigler, J., Çamdere, G. Ö., Koshland, D. E. & Greene, E. C. Single-molecule imaging reveals a collapsed conformational state for DNA-bound cohesin. Cell Rep. 15, 988–998 2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kanke, M., Tahara, E., Huis In’t Veld, P. J. & Nishiyama, T. Cohesin acetylation and Wapl–Pds5 oppositely regulate translocation of cohesin along DNA. EMBO J. 35, 2686–2698 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Davidson, I. F. et al. Rapid movement and transcriptional re-localization of human cohesin on DNA. EMBO J. 35, 2671–2685 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoshimura, S. H. & Hirano, T. HEAT repeats—versatile arrays of amphiphilic helices working in crowded environments? J. Cell Sci. 129, 3963–3970 (2016).

    CAS  PubMed  Google Scholar 

  23. Hirano, M. & Hirano, T. Opening closed arms: long-distance activation of SMC ATPase by hinge-DNA interactions. Mol. Cell 21, 175–186 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Chiu, A., Revenkova, E. & Jessberger, R. DNA interaction and dimerization of eukaryotic SMC hinge domains. J. Biol. Chem. 279, 26233–26242 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Kschonsak, M. et al. Structural basis for a safety-belt mechanism that anchors condensin to chromosomes. Cell 171, 588–600 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Diebold-Durand, M.-L. et al. Structure of full-length SMC and rearrangements required for chromosome organization. Mol. Cell 67, 334–347 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marko, J. F., Rios, P. D. L., Barducci, A. & Gruber, S. DNA-segment-capture model for loop extrusion by structural maintenance of chromosome (SMC) protein complexes. Preprint at bioRxiv https://doi.org/10.1101/325373 (2018).

  28. Srinivasan, M. et al. The cohesin ring uses its hinge to organize DNA using non-topological as well as topological mechanisms. Cell 173, 1508–1519 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kappel, C., Zachariae, U., Dölker, N. & Grubmüller, H. An unusual hydrophobic core confers extreme flexibility to HEAT repeat proteins. Biophys. J. 99, 1596–1603 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chao, W. C. H. et al. Structure of the cohesin loader Scc2. Nat. Commun. 8, 13952 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wells, J. N., Gligoris, T. G., Nasmyth, K. A. & Marsh, J. A. Evolution of condensin and cohesin complexes driven by replacement of Kite by Hawk proteins. Curr. Biol. 27, R17–R18 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zabrady, K. et al. Chromatin association of the SMC5/6 complex is dependent on binding of its NSE3 subunit to DNA. Nucleic Acids Res. 44, 1064–1079 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Kamada, K., Miyata, M. & Hirano, T. Molecular basis of SMC ATPase activation: role of internal structural changes of the regulatory subcomplex ScpAB. Structure 21, 581–594 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Keenholtz, R. A. et al. Oligomerization and ATP stimulate condensin-mediated DNA compaction. Sci. Rep. 7, 14279 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Eeftens, J. M. et al. Real-time detection of condensin-driven DNA compaction reveals a multistep binding mechanism. EMBO J. 36, 3448–3457 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Strick, T. R., Kawaguchi, T. & Hirano, T. Real-time detection of single-molecule DNA compaction by condensin I. Curr. Biol. 14, 874–880 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Sun, M., Nishino, T. & Marko, J. F. The SMC1–SMC3 cohesin heterodimer structures DNA through supercoiling-dependent loop formation. Nucleic Acids Res. 41, 6149–6160 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, H. & Loparo, J. J. Multistep assembly of DNA condensation clusters by SMC. Nat. Commun. 7, 10200 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hopfner, K. P. & Tainer, J. A. Rad50/SMC proteins and ABC transporters: unifying concepts from high-resolution structures. Curr. Opin. Struct. Biol. 13, 249–255 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Kamada, K., Su’etsugu, M., Takada, H., Miyata, M. & Hirano, T. Overall shapes of the SMC–ScpAB complex are determined by balance between constraint and relaxation of its structural parts. Structure 25, 603–616 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Eeftens, J. M. et al. Condensin Smc2–Smc4 dimers are flexible and dynamic. Cell Rep. 14, 1813–1818 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nasmyth, K. & Haering, C. H. The structure and function of SMC and kleisin complexes. Annu. Rev. Biochem. 74, 595–648 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Gerlich, D., Koch, B., Dupeux, F., Peters, J. M. & Ellenberg, J. Live-cell imaging reveals a stable cohesin-chromatin interaction after but not before DNA replication. Curr. Biol. 16, 1571–1578 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Kikuchi, S., Borek, D. M., Otwinowski, Z., Tomchick, D. R. & Yu, H. Crystal structure of the cohesin loader Scc2 and insight into cohesinopathy. Proc. Natl. Acad. Sci. USA 113, 12444–12449 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51–56 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Petela, N. et al. Multiple interactions between Scc1 and Scc2 activate cohesin’s DNA dependent ATPase and replace Pds5 during loading. Preprint at bioRxiv https://doi.org/10.1101/205914 (2017).

  47. Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the authors’ lab is supported by US Public Health Service Award R01 GM035463 from the National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor G. Corces.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nichols, M.H., Corces, V.G. A tethered-inchworm model of SMC DNA translocation. Nat Struct Mol Biol 25, 906–910 (2018). https://doi.org/10.1038/s41594-018-0135-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-018-0135-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing