Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Nanoscale chemical imaging using tip-enhanced Raman spectroscopy

Abstract

Confocal and surface-enhanced Raman spectroscopy (SERS) are powerful techniques for molecular characterization; however, they suffer from the drawback of diffraction-limited spatial resolution. Tip-enhanced Raman spectroscopy (TERS) overcomes this limitation and provides chemical information at length scales in the tens of nanometers. In contrast to alternative approaches to nanoscale chemical analysis, TERS is label free, is non-destructive, and can be performed in both air and liquid environments, allowing its use in a diverse range of applications. Atomic force microscopy (AFM)-based TERS is especially versatile, as it can be applied to a broad range of samples on various substrates. Despite its advantages, widespread uptake of this technique for nanoscale chemical imaging has been inhibited by various experimental challenges, such as limited lifetime, and the low stability and yield of TERS probes. This protocol details procedures that will enable researchers to reliably perform TERS imaging using a transmission-mode AFM-TERS configuration on both biological and non-biological samples. The procedure consists of four stages: (i) preparation of plasmonically active TERS probes; (ii) alignment of the TERS system; (iii) experimental procedures for nanoscale imaging using TERS; and (iv) TERS data processing. We provide procedures and example data for a range of different sample types, including polymer thin films, self-assembled monolayers (SAMs) of organic molecules, photocatalyst surfaces, small molecules within biological cells, single-layer graphene and single-walled carbon nanotubes in both air and water. With this protocol, TERS probes can be prepared within ~23 h, and each subsequent TERS experimental procedure requires 3–5 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TERS principle.
Fig. 2: Comparison of TERS with other analytical techniques.
Fig. 3: Optical configuration of the TERS system.
Fig. 4: Inspecting the quality of TERS probes using SEM imaging.
Fig. 5: Diffraction-limited focal spot of the excitation laser.
Fig. 6: Estimating the far-field spatial resolution of a TERS system via Raman imaging of an SWCNT.
Fig. 7: Assessing the sensitivity of a TERS probe via near-field hotspot imaging.
Fig. 8: Estimating the spatial resolution of a TERS image.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kumar, N., Mignuzzi, S., Su, W. & Roy, D. Tip-enhanced Raman spectroscopy: principles and applications. EPJ Tech. Instrum. 2, 9 (2015).

    Article  Google Scholar 

  2. Verma, P. Tip-enhanced Raman spectroscopy: technique and recent advances. Chem. Rev. 117, 6447–6466 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Deckert-Gaudig, T., Taguchi, A., Kawata, S. & Deckert, V. Tip-enhanced Raman spectroscopy–from early developments to recent advances. Chem. Soc. Rev. 46, 4077–4110 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, X. et al. Tip-enhanced Raman spectroscopy for surfaces and interfaces. Chem. Soc. Rev. 46, 4020–4041 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Hartschuh, A. Tip‐enhanced near‐field optical microscopy. Angew. Chem. Int. Ed. Engl. 47, 8178–8191 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Kawata, S. & Shalaev, V. M. Tip Enhancement (Elsevier, Amsterdam, 2007).

    Google Scholar 

  7. Morton, S. M., Silverstein, D. W. & Jensen, L. Theoretical studies of plasmonics using electronic structure methods. Chem. Rev. 111, 3962–3994 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Weckhuysen, B. M. In-situ Spectroscopy of Catalysts (American Scientific Publishers, Stevenson Ranch, 2004).

    Google Scholar 

  9. Mestl, G. In situ Raman spectroscopy—a valuable tool to understand operating catalysts. J. Mol. Catal. A Chem. 158, 45–65 (2000).

    Article  CAS  Google Scholar 

  10. Colthup, N. Introduction to Infrared and Raman Spectroscopy (Elsevier, New York, 2012).

  11. Perkampus, H.-H. UV-VIS Spectroscopy and Its Applications (Springer Science & Business Media, New York, 2013).

  12. Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R. R. & Feld, M. S. Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 99, 2957–2976 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Kim, H., Kosuda, K. M., Van Duyne, R. P. & Stair, P. C. Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chem. Soc. Rev. 39, 4820–4844 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Cheng, J.-X. & Xie, X. S. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science 350, aaa8870 (2015).

    Article  PubMed  CAS  Google Scholar 

  15. Fu, D. et al. Nanoscale infrared imaging of zeolites using photoinduced force microscopy. Chem. Commun. 53, 13012–13014 (2017).

    Article  CAS  Google Scholar 

  16. Wu, C.-Y. et al. High spatial-resolution mapping of catalytic reactions on single particles. Nature 541, 511–515 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Zheng, N., Tsai, H. N., Zhang, X., Shedden, K. & Rosania, G. R. The subcellular distribution of small molecules: a meta-analysis. Mol. Pharm. 8, 1611–1618 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang, B., Bates, M. & Zhuang, X. Super resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hollander, J. M. & Jolly, W. L. X-ray photoelectron spectroscopy. Acc. Chem. Res. 3, 193–200 (1970).

    Article  CAS  Google Scholar 

  21. Vogt, S. & Lanzirotti, A. Trends in X-ray fluorescence microscopy. Synchrotron. Radiat. News 26, 32–38 (2013).

    Article  Google Scholar 

  22. De Jonge, N. & Ross, F. M. Electron microscopy of specimens in liquid. Nat. Nanotechnol. 6, 695–704 (2011).

    Article  PubMed  CAS  Google Scholar 

  23. Nuñez, J., Renslow, R., Cliff, J. B. III & Anderton, C. R. NanoSIMS for biological applications: current practices and analyses. Biointerphases 13, 03B301 (2018).

    Article  CAS  Google Scholar 

  24. Kelly, T. F. & Miller, M. K. Atom probe tomography. Rev. Sci. Instrum. 78, 031101 (2007).

    Article  PubMed  CAS  Google Scholar 

  25. Schmid, T., Yeo, B. S., Leong, G., Stadler, J. & Zenobi, R. Performing tip-enhanced Raman spectroscopy in liquids. J. Raman Spectrosc. 40, 1392–1399 (2009).

    Article  CAS  Google Scholar 

  26. Nakata, A., Nomoto, T., Toyota, T. & Fujinami, M. Tip-enhanced Raman spectroscopy of lipid bilayers in water with an alumina-and silver-coated tungsten tip. Anal. Sci. 29, 865–869 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Scherger, J. D. & Foster, M. D. Tunable, liquid resistant tip-enhanced Raman spectroscopy probes: toward label-free nano-resolved imaging of biological systems. Langmuir 33, 7818–7825 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Martín Sabanés, N., Driessen, L. M. & Domke, K. F. Versatile side-illumination geometry for tip-enhanced Raman spectroscopy at solid/liquid interfaces. Anal. Chem. 88, 7108–7114 (2016).

    Article  PubMed  CAS  Google Scholar 

  29. Kumar, N. et al. Nanoscale chemical imaging of solid-liquid interfaces using tip-enhanced Raman spectroscopy. Nanoscale 10, 1815–1824 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Touzalin, T., Dauphin, A. L., Joiret, S., Lucas, I. T. & Maisonhaute, E. Tip-enhanced Raman spectroscopy imaging of opaque samples in organic liquid. Phys. Chem. Chem. Phys. 18, 15510–15513 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Zeng, Z.-C. et al. Electrochemical tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 137, 11928–11931 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Kurouski, D., Mattei, M. & Van Duyne, R. P. Probing redox reactions at the nanoscale with electrochemical tip-enhanced Raman spectroscopy. Nano Lett. 15, 7956–7962 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, X. et al. Revealing intermolecular interaction and surface restructuring of an aromatic thiol assembling on Au (111) by tip-enhanced Raman spectroscopy. Anal. Chem. 88, 915–921 (2015).

    Article  PubMed  CAS  Google Scholar 

  34. Touzalin, T., Joiret, S., Maisonhaute, E. & Lucas, I. T. Complex electron transfer pathway at a microelectrode captured by in situ nanospectroscopy. Anal. Chem. 89, 8974–8980 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Mattei, M. et al. Tip-enhanced Raman voltammetry: coverage dependence and quantitative modeling. Nano Lett. 17, 590–596 (2016).

    Article  PubMed  CAS  Google Scholar 

  36. Kumar, N. et al. Simultaneous topographical, electrical and optical microscopy of optoelectronic devices at the nanoscale. Nanoscale 9, 2723–2731 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Liu, Z. et al. Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy. Nat. Commun. 2, 305 (2011).

    Article  PubMed  CAS  Google Scholar 

  38. Su, W., Kumar, N., Mignuzzi, S., Crain, J. & Roy, D. Nanoscale mapping of excitonic processes in single-layer MoS2 using tip-enhanced photoluminescence microscopy. Nanoscale 8, 10564–10569 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Beversluis, M. R., Bouhelier, A. & Novotny, L. Continuum generation from single gold nanostructures through near-field mediated intraband transitions. Phys. Rev. B 68, 115433 (2003).

    Article  CAS  Google Scholar 

  40. Kumar, N., Kalirai, S., Wain, A. J. & Weckhuysen, B. M. Nanoscale chemical imaging of a single catalyst particle with tip-enhanced fluorescence microscopy. ChemCatChem 11, 417–423 (2019).

  41. Hu, D., Micic, M., Klymyshyn, N., Suh, Y. D. & Lu, H. P. Correlated topographic and spectroscopic imaging beyond diffraction limit by atomic force microscopy metallic tip-enhanced near-field fluorescence lifetime microscopy. Rev. Sci. Instrum. 74, 3347–3355 (2003).

    Article  CAS  Google Scholar 

  42. Neugebauer, U. et al. On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy. ChemPhysChem 7, 1428–1430 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Cialla, D. et al. Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus. J. Raman Spectrosc. 40, 240–243 (2009).

    Article  CAS  Google Scholar 

  44. Najjar, S. et al. Tip-enhanced Raman spectroscopy of combed double-stranded DNA bundles. J. Phys. Chem. C 118, 1174–1181 (2014).

    Article  CAS  Google Scholar 

  45. Bailo, E. & Deckert, V. Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. Angew. Chem. Int. Ed. Engl. 47, 1658–1661 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Bohme, R. et al. Towards a specific characterisation of components on a cell surface—combined TERS-investigations of lipids and human cells. J. Raman Spectrosc. 40, 1452–1457 (2009).

    Article  CAS  Google Scholar 

  47. Deckert-Gaudig, T. & Deckert, V. Tip-enhanced Raman scattering studies of histidine on novel silver substrates. J. Raman Spectrosc. 40, 1446–1451 (2009).

    Article  CAS  Google Scholar 

  48. Blum, C. et al. Understanding tip-enhanced Raman spectra of biological molecules: a combined Raman, SERS and TERS study. J. Raman Spectrosc. 43, 1895–1904 (2012).

    Article  CAS  Google Scholar 

  49. Yeo, B.-S., Mädler, S., Schmid, T., Zhang, W. & Zenobi, R. Tip-enhanced Raman spectroscopy can see more: the case of cytochrome c. J. Phys. Chem. C 112, 4867–4873 (2008).

    Article  CAS  Google Scholar 

  50. Davies, H. S. et al. Secondary structure and glycosylation of mucus glycoproteins by Raman spectroscopies. Anal. Chem. 88, 11609–11615 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lipiec, E., Perez-Guaita, D., Kaderli, J., Wood, B. R. & Zenobi, R. Direct nanospectroscopic verification of the amyloid aggregation pathway. Angew. Chem. Int. Ed. Engl. 57, 8519–8524 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Kumar, N., Drozdz, M. M., Jiang, H., Santos, D. M. & Vaux, D. J. Nanoscale mapping of newly-synthesised phospholipid molecules in a biological cell using tip-enhanced Raman spectroscopy. Chem. Commun. 53, 2451–2454 (2017).

    Article  CAS  Google Scholar 

  53. Okuno, Y., Saito, Y., Kawata, S. & Verma, P. Tip-enhanced Raman investigation of extremely localized semiconductor-to-metal transition of a carbon nanotube. Phys. Rev. Lett. 111, 216101 (2013).

    Article  PubMed  CAS  Google Scholar 

  54. Yano, T.-a et al. Tip-enhanced nano-Raman analytical imaging of locally induced strain distribution in carbon nanotubes. Nat. Commun. 4, 2592 (2013).

    Article  PubMed  CAS  Google Scholar 

  55. Yano, T.-A., Verma, P., Saito, Y., Ichimura, T. & Kawata, S. Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres. Nat. Photonics 3, 473–477 (2009).

    Article  CAS  Google Scholar 

  56. Marquestaut, N. et al. Imaging of single GaN nanowires by tip-enhanced Raman spectroscopy. J. Raman Spectrosc. 40, 1441–1445 (2009).

    Article  CAS  Google Scholar 

  57. Boehmler, M., Wang, Z., Myalitsin, A., Mews, A. & Hartschuh, A. Optical imaging of CdSe nanowires with nanoscale resolution. Angew. Chem. Int. Ed. Engl. 50, 11536–11538 (2011).

    Article  CAS  Google Scholar 

  58. Ogawa, Y., Yuasa, Y., Minami, F. & Oda, S. Tip-enhanced Raman mapping of a single Ge nanowire. Appl. Phys. Lett. 99, 053112 (2011).

    Article  CAS  Google Scholar 

  59. Mignuzzi, S. et al. Probing individual point defects in graphene via near-field Raman scattering. Nanoscale 7, 19413–19418 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Su, W., Kumar, N., Dai, N. & Roy, D. Nanoscale mapping of intrinsic defects in single-layer graphene using tip-enhanced Raman spectroscopy. Chem. Commun. 52, 8227–8230 (2016).

    Article  CAS  Google Scholar 

  61. Pollard, A. J. et al. Nanoscale optical spectroscopy: an emerging tool for the characterization of graphene and related 2-D materials. J. Mater. Nanosci. 1, 39–49 (2014).

    Google Scholar 

  62. Su, W., Kumar, N., Spencer, S. J., Dai, N. & Roy, D. Transforming bilayer MoS2 into single-layer with strong photoluminescence using UV-ozone oxidation. Nano Res. 8, 3878–3886 (2015).

    Article  CAS  Google Scholar 

  63. Smithe, K. K. H. et al. Nanoscale heterogeneities in monolayer MoSe2 revealed by correlated scanning probe microscopy and tip-enhanced Raman spectroscopy. ACS Appl. Nano Mater. 1, 572–579 (2018).

    Article  CAS  Google Scholar 

  64. Park, K.-D. et al. Hybrid tip-enhanced nanospectroscopy and nanoimaging of monolayer WSe2 with local strain control. Nano Lett. 16, 2621–2627 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Feng, S., Vivian, M., Yao, Z., Dieter, S. A. & Renato, Z. Nanoscale chemical imaging of interfacial monolayers by tip‐enhanced Raman spectroscopy. Angew. Chem. Int. Ed. Engl. 56, 9361–9366 (2017).

    Article  CAS  Google Scholar 

  66. Vivian, M. et al. Structural characterization of a covalent monolayer sheet obtained by two‐dimensional polymerization at an air/water interface. Angew. Chem. Int. Ed. Engl. 56, 15262–15266 (2017).

    Article  CAS  Google Scholar 

  67. van Schrojenstein Lantman, E. M., Deckert-Gaudig, T., Mank, A. J. G., Deckert, V. & Weckhuysen, B. M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nanotechnol. 7, 583–586 (2012).

    Article  PubMed  CAS  Google Scholar 

  68. Kumar, N., Stephanidis, B., Zenobi, R., Wain, A. & Roy, D. Nanoscale mapping of catalytic activity using tip-enhanced Raman spectroscopy. Nanoscale 7, 7133–7137 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Domke, K. F. & Pettinger, B. In situ discrimination between axially complexed and ligand-free co porphyrin on Au(111) with tip-enhanced Raman spectroscopy. ChemPhysChem 10, 1794–1798 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Zhong, J.-H. et al. Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution. Nat. Nanotechnol. 12, 132–136 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Hartman, T., Wondergem, C. S., Kumar, N., van den Berg, A. & Weckhuysen, B. M. Surface-and tip-enhanced Raman spectroscopy in catalysis. J. Phys. Chem. Lett. 7, 1570–1584 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Szczerbiński, J., Gyr, L., Kaeslin, J. & Zenobi, R. Plasmon-driven photocatalysis leads to products known from E-beam and X-ray-induced surface chemistry. Nano Lett. 18, 6740–6749 (2018).

  73. Wang, X. et al. High-resolution spectroscopic mapping of the chemical contrast from nanometer domains in P3HT:PCBM organic blend films for solar-cell applications. Adv. Funct. Mater. 20, 492–499 (2010).

    Article  CAS  Google Scholar 

  74. Kumar, N., Rae, A. & Roy, D. Accurate measurement of enhancement factor in tip-enhanced Raman spectroscopy through elimination of far-field artefacts. Appl. Phys. Lett. 104, 123106 (2014).

    Article  CAS  Google Scholar 

  75. Yeo, B. S., Amstad, E., Schmid, T., Stadler, J. & Zenobi, R. Nanoscale probing of a polymer-blend thin film with tip-enhanced Raman spectroscopy. Small 5, 952–960 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Xue, L et al. High Resolution Tip Enhanced Raman Mapping on Polymer Thin Films 305 (Wiley-VCH, Weinheim, Germany, 2011). .

  77. Saito, Y., Motohashi, M., Hayazawa, N., Iyoki, M. & Kawata, S. Nanoscale characterization of strained silicon by tip-enhanced Raman spectroscope in reflection mode. Appl. Phys. Lett. 88, 143109 (2006).

    Article  CAS  Google Scholar 

  78. Berweger, S. et al. Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy. Nat. Nanotechnol. 4, 496–499 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Martín Sabanés, N., Ohto, T., Andrienko, D., Nagata, Y. & Domke, K. F. Electrochemical TERS elucidates potential-induced molecular reorientation of adenine/Au(111). Angew. Chem. Int. Ed. Engl. 56, 9796–9801 (2017).

    Article  PubMed  CAS  Google Scholar 

  80. Ren, B., Picardi, G., Pettinger, B., Schuster, R. & Ertl, G. Tip-enhanced Raman spectroscopy of benzenethiol adsorbed on Au and Pt single-crystal surfaces. Angew. Chem. Int. Ed. Engl. 44, 139–142 (2005).

    Article  CAS  Google Scholar 

  81. Blum, C. et al. Tip-enhanced Raman spectroscopy—an interlaboratory reproducibility and comparison study. J. Raman Spectrosc. 45, 22–31 (2014).

    Article  CAS  Google Scholar 

  82. Wang, X. et al. Revealing intermolecular interaction and surface restructuring of an aromatic thiol assembling on Au(111) by tip-enhanced Raman spectroscopy. Anal. Chem. 88, 915–921 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Huang, T.-X. et al. Tip-enhanced Raman spectroscopy: tip-related issues. Anal. Bioanal. Chem. 407, 8177–8195 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Demming, A. L., Festy, F. & Richards, D. Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering. J. Chem. Phys. 122, 184716 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Yang, Z., Aizpurua, J. & Xu, H. Electromagnetic field enhancement in TERS configurations. J. Raman Spectrosc. 40, 1343–1348 (2009).

    Article  CAS  Google Scholar 

  86. Yang, L.-K. et al. Rational fabrication of a gold-coated AFM TERS tip by pulsed electrodeposition. Nanoscale 7, 18225–18231 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Meng, L. et al. Gold-coated AFM tips for tip-enhanced Raman spectroscopy: theoretical calculation and experimental demonstration. Opt. Express 23, 13804–13813 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Yeo, B. S., Stadler, J., Schmid, T., Zenobi, R. & Zhang, W. H. Tip-enhanced Raman spectroscopy—its status, challenges and future directions. Chem. Phys. Lett. 472, 1–13 (2009).

    Article  CAS  Google Scholar 

  89. Kumar, N. et al. Extending the plasmonic lifetime of tip-enhanced Raman spectroscopy probes. Phys. Chem. Chem. Phys. 18, 13710–13716 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Health and Safety Executive. Using nanomaterials at work. in Health and Safety Executive UK, HSG272 (Health and Safety Executive, Bootle, UK, 2013).

  91. Yeo, B. S., Schmid, T., Zhang, W. & Zenobi, R. Towards rapid nanoscale chemical analysis using tip-enhanced Raman spectroscopy with Ag-coated dielectric tips. Anal. Bioanal. Chem. 387, 2655–2662 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Cui, X. et al. Tuning the resonance frequency of Ag-coated dielectric tips. Opt. Express 15, 8309–8316 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Taguchi, A. et al. Controlling the plasmon resonance wavelength in metal-coated probe using refractive index modification. Opt. Express 17, 6509–6518 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Hayazawa, N., Yano, T. & Kawata, S. Highly reproducible tip-enhanced Raman scattering using an oxidized and metallized silicon cantilever tip as a tool for everyone. J. Raman Spectrosc. 43, 1177–1182 (2012).

    Article  CAS  Google Scholar 

  95. Mahan, J. E. Physical Vapor Deposition of Thin Films (Wiley-VCH, New York, 2000).

  96. Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikrosk. Anat. 9, 413–418 (1873).

    Article  Google Scholar 

  97. Opilik, L. et al. Chemical production of thin protective coatings on optical nanotips for tip-enhanced Raman spectroscopy. J. Phys. Chem. C 120, 20828–20832 (2016).

    Article  CAS  Google Scholar 

  98. Huang, Y.-F. et al. When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement. J. Am. Chem. Soc. 132, 9244–9246 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Zhang, Z., Merk, V., Hermanns, A., Unger, W. E. S. & Kneipp, J. Role of metal cations in plasmon-catalyzed oxidation: a case study of p-aminothiophenol dimerization. ACS Catal. 7, 7803–7809 (2017).

    Article  CAS  Google Scholar 

  100. Buurmans, I. L. C. & Weckhuysen, B. M. Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nat. Chem. 4, 873–886 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Roy, D., Wang, J. & Williams, C. Novel methodology for estimating the enhancement factor for tip-enhanced Raman spectroscopy. J. Appl. Phys. 105, 013530 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N.K., A.J.W. and A.J.P. acknowledge funding from the National Measurement System of the Department of Business, Energy & Industry Strategy (BEIS), UK. B.M.W. acknowledges support from the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO Gravitation programme funded by the Ministry of Education, Culture and Science of the Government of The Netherlands.

Author information

Authors and Affiliations

Authors

Contributions

N.K., B.M.W., A.J.W. and A.J.P. conceived and designed the experiments. N.K. collected and analyzed the data. All authors contributed to the discussion and presentation of results and contributed to writing the manuscript.

Corresponding author

Correspondence to Andrew J. Pollard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Kumar, N. et al. Nanoscale 10, 1815–1824 (2018): https://doi.org/10.1039/c7nr08257f

van Schrojenstein Lantman, E. M., Deckert-Gaudig, T., Mank, A. J. G., Deckert, V. & Weckhuysen, B. M. Nat. Nanotechnol. 7, 583–586 (2012): https://doi.org/10.1038/nnano.2012.131

Kumar, N., Drozdz, M. M., Jiang, H., Santos, D. M. & Vaux, D. J. Chem. Commun. 53, 2451–2454 (2017): https://doi.org/10.1039/C6CC10226C

Mignuzzi, S. et al. Nanoscale 7, 19413–19418 (2015): https://doi.org/10.1039/C5NR04664E

Integrated supplementary information

Supplementary Figure 1 Nanoscale imaging of a single-layer graphene flake using TERS.

a, Overlay image of confocal Raman maps (60 × 60 pixels) obtained using the intensity of 2D (red), D (green) and G (blue) Raman bands measured from a single-layer graphene flake. Integration time: 1 s. Pixel size: 25 nm. Scale bar: 300 nm. b, Overlay image of TERS maps (1.5 µm × 1.5 µm) obtained using the intensity of the 2D (red), D (green) and G (blue) bands from the single-layer graphene area shown in a. Integration time: 1 s. Pixel size: 30 nm. Scale bar: 300 nm. In the TERS image in b, a localized D band signal is observed at the edge of the graphene flake, clearly delineating the boundary of the single-layer flake. Furthermore, a defect signal from the D-peak is observed within the single-layer flake, which cannot be clearly distinguished in the confocal Raman image due to the lower sensitivity and spatial resolution. Adapted with permission from Su et al.60, Royal Society of Chemistry.

Supplementary Figure 2 TERS measurement of a PEDOT:PSS thin film on glass.

Tip-in (TERS) and tip-out (far-field) Raman spectra measured on a PEDOT:PSS thin film sample. Integration time: 60 s. Laser power: 50 µW. TERS contrast of 1444 cm-1 PEDOT Raman band is calculated to be 1.4 ± 0.1. Spectra are vertically shifted for easier visualisation.

Supplementary Figure 3 TERS measurement of a SAM of BPT on Au.

Tip-in (TERS) and tip-out (far-field) Raman spectra measured on a BPT SAM sample, where the BPT Raman peak is observed only for the TERS measurement. Integration time: 1 s. Laser power: 110 µW. Spectra are vertically shifted for easier visualisation.

Supplementary Figure 4 Monitoring of pNTP → DMAB photocatalytic process using TERS.

Time-dependent TERS spectra monitored before and after pNTP → DMAB reaction. Before starting the reaction, the TERS signal of a pNTP SAM was monitored for at least 1 min using 633 nm excitation (5 s integration time, 380 µW) as shown in part a. pNTP → DMAB was induced by switching to a 532 nm excitation laser (700 µW) for 30 s as shown in part b. Finally, the TERS signal of DMAB was monitored by switching back to the 633 nm laser excitation as shown in part c, where the characteristic Raman bands of DMAB appear at 1142 cm-1, 1390 cm-1 and 1437 cm-1. Reproduced from van Schrojenstein Lantman et al.67, Springer Nature.

Supplementary Figure 5 Nanoscale imaging of pATP → DMAB photocatalytic reaction using TERS.

a, AFM topography image of a nanostructured Ag substrate. Scale bar: 200 nm. b, TERS image of the dashed rectangle region marked in a, showing the locations of pATP → DMAB via variation of the 1142 cm−1 DMAB Raman band intensity. Pixel size: 12.5 nm. Scale bar: 50 nm. c, TERS spectra measured at the positions marked in b. Characteristic Raman bands of DMAB are visible at 1142 cm-1, 1390 cm-1 and 1437 cm-1 in the TERS spectra measured at pATP→ DMAB reaction hotspot locations 1–3, whereas these bands are absent in the TERS spectra from locations 4–6. Integration time: 0.5 s. Adapted from Kumar et al.68, Royal Society of Chemistry.

Supplementary Figure 6 Imaging of newly synthesized phospholipid molecules in biological cells using TERS.

a, TERS image of C–D band intensity of a 1 µm × 1 µm cellular region containing newly-synthesised phospholipids (NSPs). Pixel size: 50 nm. Scale bar: 200 nm. b, TERS image of NSPs (obtained using C–D band intensity) in the 100 nm × 200 nm area marked by a dashed rectangle in a. Pixel size: 13 nm. Scale bar: 50 nm. c, TERS spectra measured at the positions marked in b. The spectra are vertically shifted for easier visualisation. TERS spectra measured at locations 1–3 clearly show the presence of a C-D band at 2100 cm-1, whereas the C-D band is absent in the TERS spectra measured at locations 4–6. Integration time: 10 s. Laser power at the sample: 350 µW. Adapted from Kumar et al.52 under a Creative Commons Attribution 3.0 license (https://creativecommons.org/licenses/by/3.0/legalcode).

Supplementary Figure 7 Nanoscale chemical imaging of SWCNTs in air and water using TERS.

a, AFM topography image showing distribution of SWCNTs over a glass substrate. Scale bar: 500 nm. b, Confocal Raman spectrum of a SWCNT showing characteristic Raman bands. Integration time: 10 s. c, TERS image of a SWCNT in water, obtained using the 1591 cm-1 Raman band intensity. Scale bar: 50 nm. Integration time for TERS imaging: 1 s; pixel size: 10 nm; laser power at the sample: 170 µW. d, Intensity profile along the line marked in c with Gaussian curve fits corresponding to the near-field (green) and far-field (red) contributions. Spatial resolution of the TERS image in c is estimated from the FWHM of the green Gaussian curve to be ≈28 nm. Adapted with permission from Kumar et al.29, Royal Society of Chemistry.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Weckhuysen, B.M., Wain, A.J. et al. Nanoscale chemical imaging using tip-enhanced Raman spectroscopy. Nat Protoc 14, 1169–1193 (2019). https://doi.org/10.1038/s41596-019-0132-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0132-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing